Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Med Biol Eng Comput ; 56(10): 1939-1947, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29682674

ABSTRACT

In vivo dosimetry (IVD) is the last step of a radiotherapy quality control program aimed to ensure that the dose delivered is in agreement with that prescribed. IVD procedures based on single detectors are time-consuming and impossible to use for the modern radiotherapy techniques, based on static or kinetic beams (modulated in intensity fluence); this means that more efficient and practical methods are highly recommended. The practical method SOFTDISO, based on the use of electronic portal image device (EPID), provides two tests (i) the R ratio between the reconstructed and the planned isocenter doses to verify an agreement within 5% and (ii) the γ-analysis of the EPID images, to verify γ% ≥ 90% and γmean ≤ 0.4. This paper reports the results of 11,357 IVD tests carried out for 823 patients treated by three-dimensional conformal radiation therapy and volumetric modulated arc therapy techniques. In particular, the dose disagreements are reported distinguishing two kinds of causes, those of (i) class 1 that includes the errors due to inadequate quality controls and (ii) the class 2, due to patient morphological changes. About the tests out of tolerance, 6% were by VMAT and 21% by 3DCRT, but taking into account the only class 1 of errors, i.e., removing the causes of class 2, only 7% of patients examined presented at least one of the three mean indexes out of tolerance. The workload for IVD on 9 patients/day per linac is about 52 min/day but recently, a new automated SOFTDISO version has been implemented to reduce the time to about 34 min/day.


Subject(s)
In Vivo Dosimetry , Radiotherapy Dosage , Software , Anatomic Landmarks , Automation , Humans , Radiotherapy, Conformal , Radiotherapy, Intensity-Modulated , Reproducibility of Results
2.
Technol Cancer Res Treat ; 15(4): 535-45, 2016 08.
Article in English | MEDLINE | ID: mdl-26134437

ABSTRACT

PURPOSE: This work reports the extension of a semiempirical method based on the correlation ratios to convert electronic portal imaging devices transit signals into in vivo doses for the step-and-shoot intensity-modulated radiotherapy Siemens beams. The dose reconstructed at the isocenter point Diso, compared to the planned dose, Diso,TPS, and a γ-analysis between 2-dimensional electronic portal imaging device images obtained day to day, seems to supply a practical method to verify the beam delivery reproducibility. METHOD: The electronic portal imaging device images were obtained by the superposition of many segment fields, and the algorithm for the Diso reconstruction for intensity-modulated radiotherapy step and shoot was formulated using a set of simulated intensity-modulated radiotherapy beams. Moreover, the in vivo dose-dedicated software was integrated with the record and verify system of the centers. RESULTS: Three radiotherapy centers applied the in vivo dose procedure at 30 clinical intensity-modulated radiotherapy treatments, each one obtained with 5 or 7 beams, and planned for patients undergoing radiotherapy for prostatic tumors. Each treatment beam was checked 5 times, obtaining 900 tests of the ratios R = Diso/Diso,TPS. The average R value was equal to 1.002 ± 0.056 (2 standard deviation), while the mean R value for each patient was well within 5%, once the causes of errors were removed. The γ-analysis of the electronic portal imaging device images, with 3% 3 mm acceptance criteria, showed 90% of the tests with Pγ < 1 ≥ 95% and γmean ≤ 0.5. The off-tolerance tests were found due to incorrect setup or presence of morphological changes. This preliminary experience shows the great utility of obtaining the in vivo dose results in quasi real time and close to the linac, where the radiotherapy staff may immediately spot possible causes of errors. The in vivo dose procedure presented here is one of the objectives of a project, for the development of practical in vivo dose procedures, financially supported by the Istituto Nazionale di Fisica Nucleare.


Subject(s)
Radiotherapy, Intensity-Modulated , Algorithms , Humans , Particle Accelerators , Phantoms, Imaging , Radiometry/methods , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated/instrumentation , Radiotherapy, Intensity-Modulated/methods , Software
3.
Med Phys ; 41(6): 062103, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24877830

ABSTRACT

PURPOSE: Results about the feasibility of a method for quasi real time in vivo dosimetry (IVD) at the isocenter point for volumetric modulated arc therapy (VMAT) are here reported. The method is based on correlations between the EPID signal and the dose on the beam central axis. Moreover, the γ-analysis of EPID images was adopted to verify off-axis reproducibility of fractionated plan delivery. METHODS: An algorithm to reconstruct in vivo the isocenter dose, D(iso), for RapidArc treatments has been developed. 20 VMAT plans, optimized with two opposite arcs, for prostate, pancreas, and head treatments have been delivered by a Varian linac both to a conic PMMA phantom with elliptical section and to patients. The ratios R between reconstructed D(iso) and the planned doses were determined for phantom and patient irradiations adopting an acceptance criterion of ±5%. In total, 40 phantom checks and 400 patient checks were analyzed. Moreover, 3% and 3 mm criteria were adopted for portal image γ-analysis to assess patient irradiation reproducibility. RESULTS: The average ratio R, between reconstructed and planned doses for the PMMA phantom irradiations was equal to 1.007 ± 0.024. When the IVD method was applied to the 20 patients, the average R ratio was equal to 1.003 ± 0.017 and 96% of the tests were within the acceptance criteria. The portal image γ-analysis supplied 88% of the tests within the pass rates γ(mean) ≤ 0.4 and P(γ<1) ≥ 98%. All the warnings were understood comparing the CT and the cone beam CT images and in one case a patient's setup error was detected and corrected for the successive fractions. CONCLUSIONS: This preliminary experience suggests that the method is able to detect dosimetric errors in quasi real time at the end of the therapy session. The authors intend to extend this procedure to other pathologies with the integration of in-room imaging verification by cone beam CT.


Subject(s)
Radiometry/methods , Radiotherapy, Intensity-Modulated/methods , Abdominal Neoplasms/diagnostic imaging , Abdominal Neoplasms/radiotherapy , Algorithms , Cone-Beam Computed Tomography , Feasibility Studies , Head and Neck Neoplasms/diagnostic imaging , Head and Neck Neoplasms/radiotherapy , Humans , Male , Models, Biological , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/radiotherapy , Particle Accelerators , Phantoms, Imaging , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/radiotherapy , Radiometry/instrumentation , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/instrumentation , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/instrumentation , Time Factors , Tomography, X-Ray Computed
4.
Phys Med ; 30(4): 419-26, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24361278

ABSTRACT

PURPOSE: The aim of this work was to extend an in-vivo dosimetry (IVD) method, previously developed by the authors for 3D-conformal radiotherapy, to step and shoot IMRT treatments for pelvic tumors delivered by Elekta linacs. MATERIALS AND METHODS: The algorithm is based on correlation functions to convert EPID transit signals into in-vivo dose values at the isocenter point, Diso. The EPID images were obtained by the so-called "IMRT Dosimetric Weighting" mode as a superposition of many segment fields. This way each integral dosimetric image could be acquired in about 10 s after the end of beam delivery and could be processed while delivering the successive IMRT beams. A specific algorithm for Diso reconstruction especially featured for step and shoot IMRT was implemented using a fluence inhomogeneity index, FI, introduced to describe the degree of beam modulation with respect to open beams. A γ-analysis of 2D-EPID images obtained day to day, resulted rapid enough to verify the plan delivery reproducibility. RESULTS: Fifty clinical IMRT beams, planned for patients undergoing radiotherapy of pelvic tumors, were used to irradiate a homogeneous phantom. For each beam the agreement between the reconstructed dose, Diso, and the TPS computed dose, Diso,TPS, was well within 5%, while the mean ratio R = Diso/Diso,TPS resulted for 250 tests equal to 1.006 ± 0.036. The same beams were checked in vivo, i.e. during patient treatment delivery, obtaining 500 tests whose average R ratio resulted equal to 1.011 ± 0.042. The γ-analysis of the EPID images with 5% 3 mm criteria supplied 85% of the tests with pass rates γ(mean) ≤ 0.5 and P(γ<1) ≥ 90%.


Subject(s)
Particle Accelerators , Radiometry/methods , Radiotherapy, Intensity-Modulated/instrumentation , Humans , Pelvic Neoplasms/radiotherapy , Phantoms, Imaging , Radiotherapy Planning, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL
...