Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 14166, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37644276

ABSTRACT

To the best of our knowledge, this is the first experimental evidence of the effect of isothermal changes in entropy on a living organism. In greater detail, the effect of the reduction of the total Boltzmann-Gibbs entropy (S) of the aquatic environment on the survival rate and body mass of the fruit fly Drosophila melanogaster was investigated. The tests were carried out in standard thermodynamic states at room temperature of 296.15 K and ambient atmospheric pressure of 1 bar. Two variants of entropy reduction (ΔS) were tested for ΔS = 28.49 and 51.14 J K-1 mol-1 compared to the blind and control samples. The entropy level was experimentally changed, using the quantum system for isothermal entropy reduction. This system is based on quantum bound entanglement of phonons and the phenomenon of phonon resonance (interference of phonon modes) in condensed matter (Silicon dioxide (SiO2) and single crystals of Silicon (Si0), Aluminum (Al0) plates ("chips"), glass, and water). All studied organisms were of the same age (1 day). Mortality was observed daily until the natural death of the organisms. The investigations showed that changes in the Boltzmann-Gibbs entropy affected the survival and body mass of the fruit flies. On the one hand, the reduction in entropy under isothermal conditions in the aquatic environment for ΔS = 28.49 J K-1 mol-1 resulted in an extension of the lifespan and an increase in the body mass of female fruit flies. On the other hand, the almost twofold reduction in this entropy for ΔS = 51.14 J K-1 mol-1 shortened the lives of the males. Thus, the lifespan and body mass of flies turned out to be a specific reaction of metabolism related to changes in the entropy of the aquatic environment.


Subject(s)
Drosophila melanogaster , Silicon Dioxide , Female , Male , Animals , Entropy , Drosophila , Thermodynamics
2.
Environ Geochem Health ; 45(8): 6713-6726, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37368174

ABSTRACT

Eisenia fetida is an earthworm species often used to assess the toxicity of contaminants in soils. Several studies indicated that its response can be unpredictable because it depends both on total concentrations of contaminants and also on their forms that differ in susceptibility to be released from soil solid phase. The issue is complex because two various uptake routes are concurrently involved, dermal and ingestion in guts, where the bioavailability of contaminants can considerably change. The aim of this study was to analyze the toxicity of arsenic (As) in various strongly contaminated meadow and forest soils, representative for former As mining and processing area, to earthworms E. fetida and its accumulation in their bodies. An attempt was made to find relationships between the response of earthworms and chemical extractability of As. In the bioassay, carried out according to the standard ISO protocol, different endpoints were applied: earthworm survival, fecundity measured by the numbers of juveniles and cocoons, earthworm weight and As accumulation in the bodies. The results proved that E. fetida can tolerate extremely high total As concentrations in soils, such as 8000 mg/kg, however, the individual endpoints were not correlated and showed different patterns. The most sensitive one was the number of juveniles. No particular soil factor was identified that would indicate an exceptionally high As susceptibility to the release from one of soils, however, we have demonstrated that the sum of non-specifically and specifically bound As (i.e. fractions F1 + F2 in sequential extraction according to Wenzel) could be a good chemical indicator of arsenic toxicity to soil invertebrates.


Subject(s)
Arsenic Poisoning , Arsenic , Oligochaeta , Soil Pollutants , Animals , Arsenic/analysis , Soil , Oligochaeta/physiology , Soil Pollutants/analysis
3.
Sci Rep ; 12(1): 16634, 2022 10 05.
Article in English | MEDLINE | ID: mdl-36198735

ABSTRACT

The belowground community structure of soil biota depends on plant composition and may be affected by invasive plant species. We hypothesized that the type of land restoration method applied affects the abundance and composition of soil invertebrates. Our field experiment centred on Solidago species control using different seed mixtures and methods of seed introduction (sowing mixtures: grasses, grasses with legumes, seeds from a seminatural meadow, and application of fresh hay) and different frequencies of mowing (one, two, or three times per year). Soil invertebrates were identified to the taxa, using light microscopes. Richness and diversity indices were calculated, and a redundancy analysis was conducted. Generally, mowing intensity negatively influenced soil organisms, although increased mowing frequency positively affected the abundance of some taxa (Symphyla, Hemiptera). Mowing twice per year decreased the abundance of soil invertebrates, but not their diversity. Soil invertebrate taxa had the greatest abundance in the plots sown with a seed mixture containing grasses with legumes. Among the restoration methods studied, mowing once a year and introducing grasses with legumes represented the least harmful strategy with regard to soil invertebrate abundance. Further studies are needed to investigate the dynamics of soil mesofauna exposed to long-term mowing and changes in vegetation characteristics.


Subject(s)
Fabaceae , Solidago , Animals , Biodiversity , Ecosystem , Introduced Species , Invertebrates , Poaceae , Soil
4.
Insects ; 13(10)2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36292852

ABSTRACT

Fallopia baldschuanica (Polygonaceae) is an Asian plant growing wild in parts of Europe and North and Central America as an introduced taxon, in many countries it is considered a potentially invasive species. This article presents the list of 18 volatile organic compounds (VOCs) emitted by the flowers of F. baldchuanica and identified by headspace gas chromatography/mass spectrometry (HS-GC/MS) analyzes, and a list of flower-visiting and pollinating insects that have been observed in the city center of Wroclaw (SW Poland). ß-ocimene, heptanal, nonanal, α-pinene, 3-thujene, and limonene, were detected as the floral scent's most important aroma compounds. F. baldschuanica also produces the aphid alarm pheromones, i.e., ß-farnesene and limonene, that repels aphids. Additionally, the pollinators of F. baldschuanica were indicated, based on two years of observations in five sites in the urban area. It was found, that the pollinators of this plant with the highest species stability are: Diptera from families Syrphidae (Chrysotoxum bicinctum, Eristalis pertinax, Eupeodes corollae, Episyrphus balteatus, Eristalis tenax, Syrphus ribesii, Eristalis intricaria), Muscidae (Musca domestica), Sarcophagidae (Sarcophaga spp.), Calliphoridae (Lucilia sericata, Lucilia caesar), Hymenoptera from families Vespidae (Vespula vulgaris), and Apidae (Apis sp., Bombus sp.). The key role of VOCs in adaptation to plant expansion is discussed.

5.
Molecules ; 26(9)2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33919120

ABSTRACT

Rare carnivorous plants representing the genus Sarracenia are perceived as very interesting to scientists involved in various fields of botany, ethnobotany, entomology, phytochemistry and others. Such high interest is caused mainly by the unique capacity of Sarracenia spp. to attract insects. Therefore, an attempt to develop a protocol for micropropagation of the Sarracenia alata (Alph.Wood) Alph.Wood, commonly named yellow trumpets, and to identify the specific chemical composition of volatile compounds of this plant in vitro and ex vivo was undertaken. Thus, the chemical volatile compounds excreted by the studied plant to attract insects were recognized with the application of the headspace solid-phase microextraction (HS-SPME) coupled with the GC-MS technique. As the major volatile compounds (Z)-3-hexen-1-ol (16.48% ± 0.31), (E)-3-hexen-1-ol acetate (19.99% ± 0.01) and ß-caryophyllene (11.30% ± 0.27) were identified. Further, both the chemical assumed to be responsible for attracting insects, i.e., pyridine (3.10% ± 0.07), and whole plants were used in in vivo bioassays with two insect species, namely Drosophila hydei and Acyrthosiphon pisum. The obtained results bring a new perspective on the possibilities of cultivating rare carnivorous plants in vitro since they are regarded as a valuable source of bioactive volatile compounds, as including ones with repellent or attractant activity.


Subject(s)
Host-Parasite Interactions , Insecta , Sarraceniaceae/chemistry , Sarraceniaceae/parasitology , Volatile Organic Compounds/analysis , Volatile Organic Compounds/chemistry , Wood/chemistry , Animals , Biological Assay , Parasite Load , Plant Development , Plant Shoots/chemistry , Plant Shoots/parasitology
6.
Soil Biol Biochem ; 1472020 Aug.
Article in English | MEDLINE | ID: mdl-32884602

ABSTRACT

Climate change and land use intensification are the two most common global change drivers of biodiversity loss. Like other organisms, the soil meso-fauna are expected to modify their functional diversity and composition in response to climate and land use changes. Here, we investigated the functional responses of Collembola, one of the most abundant and ecologically important groups of soil invertebrates. This study was conducted at the Global Change Experimental Facility (GCEF) in central Germany, where we tested the effects of climate (ambient vs. 'future' as projected for this region for the years between 2070 and 2100), land use (conventional farming, organic farming, intensively-used meadow, extensively-used meadow, and extensively-used pasture), and their interactions on the functional diversity (FD), community-weighted mean (CWM) traits (life-history, morphology), and functional composition of Collembola, as well as the Soil Biological Quality-Collembola (QBS-c) index. We found that land use was overwhelmingly the dominant driver of shifts in functional diversity, functional traits, and functional composition of Collembola, and of shifts in soil biological quality. These significant land use effects were mainly due to the differences between the two main land use types, i.e. cropland vs. grasslands. Specifically, Collembola functional biodiversity and soil biological quality were significantly lower in croplands than grasslands. However, no interactive effect of climate × land use was found in this study, suggesting that land use effects on Collembola were independent of the climate change scenario. Overall, our study shows that functional responses of Collembola are highly vulnerable to land use intensification under both climate scenarios. We conclude that land use changes reduce functional biodiversity and biological quality of soil.

7.
Rev Environ Health ; 34(3): 303-307, 2019 Sep 25.
Article in English | MEDLINE | ID: mdl-31444967

ABSTRACT

The aim of this research was to assess the effect of soil contamination with titanium (Ti) and iron (Fe) at military sites in Ukraine using the avoidance and reproduction tests with Folsomia candida (springtail). The soil used for the tests was sampled in 2017 from Dolyna, Ivano-Frankivsk region, Ukraine from two plots, namely a contaminated and a control site. The sample site is a former military site previously used for tank training. At the control site mainly the concentrations of Ti and Fe were exceeded. The control soil was free from contamination. The avoidance test and reproduction test were conducted with the use of springtail species F. candida. The following nine levels of contamination with heavy metals were established: 1%, 1.5%, 5%, 10%, 15%, 25%, 50%, 75% and 100%. The duration of the avoidance test was 7 days, and that of the reproduction test was 28 days. Overall, the results show that the avoidance and reproduction tests with collembolans have the potential to be used as screening tools in an ecological risk assessment of heavy metals. In the avoidance test, the concentrations from 1.5 to 100% significantly decreased the number of F. candida in the contamination site in comparison to the control site. At the same time, avoidance was not observed in the first concentration (1%). According to the reproduction test, the negative effect on the number of F. candida juveniles was observed beginning at the 10% dose. The half maximal effective concentration (EC50) for the avoidance test was 50.12%, while that for the reproduction test was 22.39%. The contamination with heavy metals at the military areas indicated the short- and long-term toxicity risk on the springtail F. candida.


Subject(s)
Arthropods/drug effects , Iron/toxicity , Soil Pollutants/toxicity , Titanium/toxicity , Toxicity Tests , Animals , Avoidance Learning/drug effects , Military Personnel , Reproduction/drug effects , Risk Assessment
8.
Insects ; 10(9)2019 Aug 22.
Article in English | MEDLINE | ID: mdl-31443520

ABSTRACT

Aeolothrips intermedius is a thrips predator often found in phytocoenoses worldwide. Both the adults and larvae of this species prey on small invertebrates, including phytophagous species from Thysanoptera group. The aim of this study was to determine the morphological variability of the A. intermedius relative to the locality and, indirectly, to the species of host plant. Insects were collected from five localities in southwest Poland and five different host plants. For each of the sexes, six morphometric features were assessed: body length, length of antennae, wing length, head length, head width and length of pronotum. Additionally, the body mass for each individual was estimated. The findings revealed that in females, both the locality and host plant had a significant impact on almost all of these features. In males, the morphometric features under study correlated strongly with locality and only moderately with the host plant. Certain differences were observed between males and females, mainly in terms of antennae length. The results show that A. intermedius exhibits significant variability in this respect, which is indicative of the species' phenotypic plasticity. The body length was the trait with the most distinct response to the locality and host plant.

9.
Environ Sci Pollut Res Int ; 26(18): 18230-18239, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31041701

ABSTRACT

Biochar as a carbon-rich highly porous substance has been proposed for use in agriculture and horticulture as a soil amendment. One of the main concerns of this application of biochar is its potential contamination with heavy metals (HMs) and polycyclic aromatic hydrocarbons. The aim of this research was to access the environmental risk of biochar used as a soil amendment on soil mesofauna (mites and springtails). We conducted both field and laboratory experiments with the use of wood-chip biochar from low-temperature (300 °C) flash pyrolysis. Biochar was free from polycyclic aromatic hydrocarbons (PAH), and the concentration of all tested toxic compounds was very low or even under the level of detection. Both the results of field and laboratory studies show no toxic effects on soil mesofauna. In the field studies, the biochar application of 50 t/ha in maize and oilseed rape crops significantly increased the mean number of mesofauna. This change probably resulted from improved soil chemical properties (in particular organic carbon content and cation exchange capacity) upon biochar addition. The results of the avoidance test with the use of springtail species Folsomia candida showed the possible short-term toxicity risk from a dose of 5%. The results of the reproduction test indicate the negative response of F. candida from the rate of 25% (higher than the field dose, which corresponds to 10% in laboratory tests). The reason for the short-term toxicity might be the considerable increase in soil pH after biochar addition. To our knowledge, this is the first study that has looked so widely into the effect of biochar on soil mesofauna. We encourage further studies into the risk assessment of biochar on soil organisms in both a controlled laboratory environment and in the open field.


Subject(s)
Charcoal , Soil , Agriculture , Agrochemicals , Animals , Arthropods/drug effects , Cold Temperature , Polycyclic Aromatic Hydrocarbons/analysis , Risk Assessment , Soil/chemistry , Soil/parasitology , Soil Pollutants/analysis , Temperature , Wood/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...