Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 903: 166226, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-37572900

ABSTRACT

To meet the demand of a constantly growing population, agriculture is intensifying, causing an increased use of fertilizers and pesticides. Excessive nutrients transfer to aquatic ecosystems can disrupt the water quality and impact the aquatic life. Pesticides can also have toxic effects on non-target organisms from aquatic systems. The purpose of this study was to evaluate the efficiency of an agricultural retention pond in reducing the supply of nutrients, pesticides and suspended solids to the Nicolet River, a tributary of Lake St. Pierre in the St. Lawrence River. Research combining the study of the fate of a wide range of contaminants in both pond water and sediments, their toxicity to microcrustaceans, microalgae and amphipods, and the effectiveness of contaminant removal, has rarely been carried out in the past. Peak contaminant concentrations occurred one to two months after pesticide and fertilizer applications, and during the months with the highest rainfall. Toxic effects were only observed on microalgae, with suspended solids apparently responsible for this effect through light inhibition on growth rates. However, the pond was not effective in removing this toxicity even if suspended solids were largely removed. Pesticides removal varied widely among sampling dates and pesticide types, with an efficiency reaching 95 % for thiamethoxam, but generally remaining low and often negative (higher concentrations in outflowing water) for other pesticides. On the other hand, the mean fractional removal of suspended solids, phosphorus, and nitrogen based on concentrations was 71 %, 44 % and 22 %, respectively. These are conservative estimations since the removal rates based on loads were above 94 %. The use of retention ponds thus seems an efficient approach to reduce the quantity of fertilizers in rivers draining agriculture areas, but the studied pond was not systematically effective in removing pesticides.

2.
Ecotoxicol Environ Saf ; 176: 355-363, 2019 Jul 30.
Article in English | MEDLINE | ID: mdl-30954621

ABSTRACT

The aim of this research was to assess the ecotoxicity of leachates originating from a niobium mine located in Canada. These tailings contain considerable amounts of carbonates and phosphates and could potentially be used as fertilizer for agriculture. However, the presence of different contaminants linked with the ores mined, including rare earth elements and daughter elements of the uranium disintegration chain is of concern. Bioassays have been used to determine if the tailings leachates could be harmful. The assessment of the toxicity of progressive dilutions of five tailing leachates (808, 809, 810, 811 and 897) was performed on different organisms: phytoplankton Raphidocelis subcapitata and duckweed Lemna minor, based on their growth and chlorophyll a content, and water flea Daphnia magna based on their mobility, mortality and reproduction. Overall, the leachates showed higher toxicity to Raphidocelis subcapitata and Lemna minor, than toward Daphnia magna. Leachate 808 showed no toxicity to all organisms while leachate 810 showed significant effects to all species. The results can be explained by the leachate dissolved metal or nutrient concentrations, but also by the metal bioavailability which depends on pH and hardness. Generally, toxicity was observed in undiluted samples tested, which is not representative of the conditions that could occur in the environment. This supports the idea that these tailings could be used as fertilizer albeit more studies may be required, particularly to assess the toxicity of the tailings leachate for benthic organisms, the toxicity of the tailings for terrestrial organisms and the variations of soil and sediment physicochemical properties after tailing treatments.


Subject(s)
Aquatic Organisms/drug effects , Mining , Niobium , Water Pollutants, Chemical/toxicity , Animals , Aquatic Organisms/metabolism , Araceae/drug effects , Araceae/metabolism , Biological Availability , Canada , Chlorophyll A/metabolism , Daphnia/drug effects , Daphnia/metabolism , Phytoplankton/drug effects , Phytoplankton/metabolism , Water Pollutants, Chemical/chemistry
3.
J Environ Qual ; 42(4): 1256-66, 2013 Jul.
Article in English | MEDLINE | ID: mdl-24216377

ABSTRACT

This study evaluated the effectiveness of C-enriched subsurface-flow constructed wetlands in reducing high concentrations of nitrate (NO) and sulfate (SO) in greenhouse wastewaters. Constructed wetlands were filled with pozzolana, planted with common cattail (), and supplemented as follows: (i) constructed wetland with sucrose (CW+S), wetland units with 2 g L of sucrose solution from week 1 to 28; (ii) constructed wetland with compost (CW+C), wetland units supplemented with a reactive mixture of compost and sawdust; (iii) constructed wetland with compost and no sucrose (CW+CNS) from week 1 to 18, and constructed wetland with compost and sucrose (CW+CS) at 2 g L from week 19 to 28; and (iv) constructed wetland (CW). During 28 wk, the wetlands received a typical reconstituted greenhouse wastewater containing 500 mg L SO and 300 mg L NO. In CW+S, CW+C, and CW+CS, appropriate C:N ratio (7:3.4) and redox potential (-53 to 39 mV) for denitrification resulted in 95 to 99% NO removal. Carbon source was not a limiting factor for denitrification in C-enriched constructed wetlands. In CW+S and CW+CS, the dissolved organic carbon (DOC)/SO ratios of 0.36 and 0.28 resulted in high sulfate-reducing bacteria (SRB) counts and high SO removal (98%), whereas low activities were observed at DOC/SO ratios of 0.02 (CW) to 0.11 (CW+C, CW+CNS). On week 19, when organic C content was increased by sucrose addition in CW+CS, SRB counts increased from 2.80 to 5.11 log[CFU+1] mL, resulting in a level similar to the one measured in CW+S (4.69 log[CFU+1] mL). Consequently, high sulfate reduction occurred after denitrification, suggesting that low DOC (38-54 mg L) was the limiting factor. In CW, DOC concentration (9-10 mg L) was too low to sustain efficient denitrification and, therefore, sulfate reduction. Furthermore, the high concentration of dissolved sulfides observed in CW+S and CW+CS treated waters were eliminated by adding FeCl.


Subject(s)
Wastewater , Wetlands , Denitrification , Nitrates , Sulfates , Waste Disposal, Fluid
4.
Article in English | MEDLINE | ID: mdl-23947714

ABSTRACT

The goal of this study was to evaluate the use of passive bioreactors to reduce water-borne plant pathogens (Pythium ultimum and Fusarium oxysporum) and nutrient load (NO(-) 3 and SO(2-) 4) in greenhouse effluent. Sterilized and unsterilized passive bioreactors filled with a reactive mixture of organic carbon material were used in three replicates. After a startup period of 2 (sterilized) or 5 (unsterilized) weeks, the bioreactor units received for 14 weeks a reconstituted commercial greenhouse effluent composed of 500 mg L(-1) SO(2-) 4 and 300 mg L(-1) NO(-) 3 and were inoculated three times with P. ultimum and F. oxysporum (10(6) CFU mL(-1)). Efficacy in removing water-borne plant pathogens and nitrate reached 99.9% for both the sterilized and unsterilized bioreactors. However, efficacy in reducing the SO(2-) 4 load sharply decreased from 89% to 29% after 2 weeks of NO(-) 3-supply treatment for the unsterilized bioreactors. Although SO(2-) 4 removal efficacy for the sterilized bioreactors did not recover after 4 weeks of NO(-) 3-supply treatment, the unsterilized bioreactor nearly reached a similar level of SO(2-) 4 removal after 4 weeks of NO(-) 3-supply treatment compared with affluent loaded only with SO(2-) 4, where no competition for the carbohydrate source occurred between the denitrification process and sulfate-reducing bacteria activity. Performance differences between the sterilized and unsterilized bioreactors clearly show the predominant importance of sulfate-reducing bacteria. Consequently, when sulfate-reducing bacteria reach their optimal activity, passive bioreactors may constitute a cheap, low-maintenance method of treating greenhouse effluent to recycle wastewater and eliminate nutrient runoff, which has important environmental impacts.


Subject(s)
Bioreactors , Waste Disposal, Fluid/methods , Wastewater/microbiology , Water Pollutants, Chemical/metabolism , Agriculture , Fusarium/physiology , Nitrates/metabolism , Oxidation-Reduction , Pythium/physiology , Sulfates/metabolism , Waste Disposal, Fluid/instrumentation , Wastewater/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...