Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 15852, 2020 Sep 28.
Article in English | MEDLINE | ID: mdl-32985570

ABSTRACT

A single radiation-induced superoxide ion [Formula: see text] has been observed for the first time in metal oxides. This structural defect has been revealed in fast-neutron-irradiated (6.9×1018 n/cm2) corundum (α-Al2O3) single crystals using the EPR method. Based on the angular dependence of the EPR lines at the magnetic field rotation in different planes and the determined g tensor components, it is shown that this hole-type [Formula: see text] center (i) incorporates one regular and one interstitial oxygen atoms being stabilized by a trapped hole (S = 1/2), (ii) occupies one oxygen site in the (0001) plane being oriented along the a axis, and (iii) does not contain any other imperfection/defect in its immediate vicinity. The thermal stepwise annealing (observed via the EPR signal and corresponding optical absorption bands) of the [Formula: see text] centers, caused by their destruction with release of a mobile ion (tentatively the oxygen ion with the formal charge -1), occurs at 500-750 K, simultaneously with the partial decay of single F-type centers (mostly with the EPR-active F+ centers). The obtained experimental results are in line with the superoxide defect configurations obtained via density functional theory (DFT) calculations employing the hybrid B3PW exchange-correlation functional. In particular, the DFT calculations confirm the [Formula: see text] center spin S = 1/2, its orientation along the a axis. The [Formula: see text] center is characterized by a short O-O bond length of 1.34 Å and different atomic charges and magnetic moments of the two oxygens. We emphasize the important role of atomic charges and magnetic moments analysis in order to identify the ground state configuration.

2.
Phys Chem Chem Phys ; 19(12): 8340-8348, 2017 Mar 22.
Article in English | MEDLINE | ID: mdl-28280805

ABSTRACT

In supercell calculations of defective crystals, it is common to place a point defect or vacancy in the atomic position with the highest possible point symmetry. Then, the initial atomic structure is often arbitrary distorted before its optimization, which searches for the total energy minimum. In this paper, we suggest an alternative approach to the application of supercell models and show that it is necessary to preliminarily analyze the site symmetry of the split Wyckoff positions of the perfect crystal supercell atoms (which will be substituted or removed in defective crystals) and then perform supercell calculations with point defects for different possible site symmetries, to find the energetically most favorable defect configuration, which does not necessarily correspond to the highest site symmetry. Using CeO2 as an example, it is demonstrated that this use of the site symmetry of the removed oxygen atoms in the supercells with vacancies allows us to obtain all the possible atomic and magnetic polaron configurations, and predict which vacancy positions correspond to the lowest formation energies associated with small polarons. We give a simple symmetry based explanation for the existence of controversies in the literature on the nature of the oxygen vacancies in CeO2. In particular, the experimentally observed small polaron formation could arise for oxygen vacancies with the lowest Cs site symmetry, which exist in 3 × 3 × 3 and larger supercells. The results of first principles calculations using a linear combination of atomic orbitals and hybrid exchange-correlation functionals are compared with those from previous studies, obtained using a widely used DFT+U approach.

3.
Phys Chem Chem Phys ; 13(3): 923-6, 2011 Jan 21.
Article in English | MEDLINE | ID: mdl-21116562

ABSTRACT

One-dimensional confinement effects are modelled within the hybrid HF-DFT LCAO approach considering neutral and single-charged oxygen vacancies in SrTiO(3) ultrathin films. The calculations reveal that confinement effects are surprisingly short-range in this partly covalent perovskite; already for film thickness of 2-3 nm (and we believe, similar size nanoparticles) only the surface-plane defect properties differ from those in the bulk. This includes a pronounced decrease of the defect formation energy (by ∼1 eV), a much deeper defect band level and a noticeable change in the electronic density redistribution at the near-surface vacancy site with respect to that in the bulk. The results also show that the size effect pertains to the interactions between the oxygen vacancy and two neighboring titanium atoms and orientation (parallel or perpendicular to the surface) of the Ti-V(O)-Ti complex. In particular, we predict considerable oxygen vacancy segregation towards the surface.

4.
J Phys Chem B ; 110(25): 12274-80, 2006 Jun 29.
Article in English | MEDLINE | ID: mdl-16800548

ABSTRACT

The contact of a metastable nanocrystalline metal ensemble with a metal ion electrolyte leads to an electrochemical Ostwald ripening. The kinetics is modeled on the level of irreversible thermodynamics for the case that the rate is controlled by the electrode/electrolyte transfer resistance. In particular, the kinetic behavior of medium-sized particles and the time dependence of the electromotive force is investigated. Even though it is expressed in electrochemical terms (mixed potential), the modeling is also applicable to chemical Ostwald ripening as long as it is interfacially controlled. Under these conditions, the kinetics exhibits, even though not self-accelerating, strong similarities to selection dynamics, with the competition stemming from the cannibalistic nature of the process.

SELECTION OF CITATIONS
SEARCH DETAIL
...