Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 238
Filter
1.
Article in English | MEDLINE | ID: mdl-38955337

ABSTRACT

Continuous in-line detection and process monitoring are essential for industrial, analytical, and biomedical applications. Lightweight, highly flexible, and low-cost fiber optics enable the construction of compact and robust hand-held devices for in situ chemical and biological species analysis in both industrial and biomedical in vitro/in vivo detection. Despite the broad range of fiber-optic based applications, we lack a good understanding of the parameters that govern the efficiency of light collection or the sensitivity of detection. Consequently, comparing samples of different optical density and/or geometry becomes challenging and can lead to misinterpretation of results; especially when we lack the approaches necessary to correct the detected signal (spectra) for artifacts such as inner-filter effect or scattering. Hence, in this work, we discuss factors affecting the signal detected by the fiber optic in the bare and lens-coupled flat-tipped configurations that lead to signal/spectral distortions. We also present a simple generic model describing the excitation profile and emission collection efficiency that we verify with experimental data. Understanding the principles governing the signal collected by the fiber will provide rationales for correcting the measured emission spectra and recovering the true emission profile of optically dense samples.

2.
Anal Biochem ; 689: 115498, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38423238

ABSTRACT

We studied the spectral properties of 4'-6-diamidino-2-phenylindole (DAPI) in poly (vinyl alcohol) (PVA) films. Absorption and fluorescence spectra, emission and excitation spectra, quantum yield, and fluorescence lifetime have been characterized. An efficient room temperature phosphorescence (RTP) of DAPI has been observed with UV and blue light excitations. A few hundred millisecond phosphorescence lifetime enables a gated detection with sufficient background reduction. We found the phosphorescent Quantum Yield of DAPI in PVA Film to be 0.0009.


Subject(s)
Indoles , Temperature , Spectrometry, Fluorescence
3.
Methods Appl Fluoresc ; 12(1)2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37879322

ABSTRACT

We studied the effect of annealing on the luminescence of Coumarin 106 (C106) in poly (vinyl alcohol) films (PVA films). The samples and reference polymer films were treated at temperatures between 100 °C and 150 °C (212 F and 302 F) for various times. After cooling and smoothing, the samples and references were measured at room temperature. We observed that the PVA polymer (reference films) changes its optical properties with annealing at higher temperatures, affecting the baselines in absorption and the backgrounds in emission measurements. This requires precise background subtractions and control of the signal-to-noise ratio. Whereas the fluorescence intensity of C106 in PVA films modestly decreases with annealing, the phosphorescence depends dramatically and progressively increases by many folds. The fluorescence quantum yields and lifetimes decrease with the annealing, which suggests an increase in the non-radiative processes in the singlet excited state S1. The increase in the phosphorescence intensities results from increased intersystem crossing (ISC), which also decreases fluorescence. We also studied the effect of annealing on phosphorescence with the directly excited triplet state of C106. In this case, two processes are affected by annealing, S0→T1absorption and T1→S0phosphorescence. The long-wavelength excitation (475 nm) avoids PVA polymer excitation. The phosphorescence lifetime decreases with annealing while the phosphorescence intensity increases. These changes suggest that the radiative rate of T1→ S0increases with annealing.

4.
Eur Biophys J ; 52(6-7): 593-605, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37140595

ABSTRACT

A novel approach is presented that increases sensitivity and specificity for detecting minimal traces of DNA in liquid and on solid samples. Förster Resonance Energy Transfer (FRET) from YOYO to Ethidium Bromide (EtBr) substantially increases the signal from DNA-bound EtBr highly enhancing sensitivity and specificity for DNA detection. The long fluorescence lifetime of the EtBr acceptor, when bound to DNA, allows for multi-pulse pumping with time gated (MPPTG) detection, which highly increases the detectable signal of DNA-bound EtBr. A straightforward spectra/image subtraction eliminates sample background and allows for a huge increase in the overall detection sensitivity. Using a combination of FRET and MPPTG detection an amount as small as 10 pg of DNA in a microliter sample can be detected without any additional sample purification/manipulation or use of amplification technologies. This amount of DNA is comparable to the DNA content of a one to two human cells. Such a detection method based on simple optics opens the potential for robust, highly sensitive DNA detection/imaging in the field, quick evaluation/sorting (i.e., triaging) of collected DNA samples, and can support various diagnostic assays.


Subject(s)
Fluorescence Resonance Energy Transfer , Intercalating Agents , Humans , Fluorescence Resonance Energy Transfer/methods , DNA , Sensitivity and Specificity
5.
Methods Appl Fluoresc ; 11(2)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-36958039

ABSTRACT

Phosphorescence emission of 5,6-Benzoquinoline embedded in poly (vinyl alcohol) film has been studied at room temperature. A strong green long-lived emission was observed in films doped with 5,6-Benzoquinoline while illuminated on a UV plate. A broad phosphorescence emission spectrum is centered at about 500 nm. The phosphorescence excitation spectrum follows the absorption spectrum of 5,6-Benzoquinoline, except for a long-wavelength part, which is well beyond the absorption band. This long-wavelength part of the absorption spectrum is responsible for the forbidden S0-T1transition. The excitation at 430 nm resulted in the long-lived emission with a spectrum similar to the phosphorescence spectrum obtained with UV excitation within the absorption of 5,6-Benzoquinoline. The phosphorescence anisotropy obtained with a direct S0-T1excitation is positive, while the UV excitation is negative. In contrast to fluorescence, the phosphorescence intensity strongly depends on temperature. Phosphorescence lifetimes with UV and long-wavelength excitation are similar, with a mean value of about 0.5 s.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 295: 122640, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-36958243

ABSTRACT

Phosphorescence emission at room temperature has been observed from 2-Aminopyridyne (2APi) embedded in poly (vinyl alcohol) (PVA) films. The gated emission with UV excitation at 305 nm results in a residual delayed fluorescence at around 350 nm and a broad phosphorescence spectrum with a maximum of around 500 nm. The phosphorescence excitation spectrum of 2APi - doped PVA film differs from the absorption spectrum in the long-wavelength part, showing a band at about 400-450 nm. The phosphorescence spectrum measured with a blue (420 nm) excitation closely resembles the spectrum measured with 305 nm excitation. Whereas the phosphorescence anisotropy measured with UV excitation is low and negative, with the blue excitation, the anisotropy is high and positive. The phosphorescence lifetimes (a fraction of a millisecond) are similar for UV and blue excitations. Both phosphorescence emissions with either UV or blue excitation strongly depend on temperature.

7.
Methods Appl Fluoresc ; 10(4)2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36113439

ABSTRACT

Excitation and emission (observation) conditions heavily impact fluorescence measurements. Both observed spectra and intensity decays (fluorescence lifetimes), when incorrectly measured, may lead to incorrect data interpretations. In this report, we discuss the role of observation conditions in steady-state and time-resolved (lifetime) fluorescence measurements. We demonstrate the importance of the correction for uneven transmissions of vertical and horizontal polarizations of emission light through the detection system. The necessity of using so-called total fluorescence intensity or intensity measured under magic angle (MA) conditions has been demonstrated for both steady-state and time-resolved fluorescence measurements. The dependence of lifetime measurements on observation (emission) wavelengths is also discussed. Two fluorophores, rhodamine 6G (R6G) and 4,4 Dimethylamino-cyano stilbene (DCS) in two solvents - ethanol and glycerol have been used in order to cover a broad range of dye polarities and solvent viscosities.

8.
Exp Biol Med (Maywood) ; 247(20): 1840-1851, 2022 10.
Article in English | MEDLINE | ID: mdl-35938479

ABSTRACT

Optical biomedical imaging and diagnostics is a rapidly growing field that provides both structural and functional information with uses ranging from fundamental to practical clinical applications. Nevertheless, imaging/visualizing fluorescence objects with high spatial resolution in a highly scattering and emissive biological medium continues to be a significant challenge. A fundamental limiting factor for imaging technologies is the signal-to-background ratio (SBR). For a long time to improve the SBR, we tried to improve the brightness of fluorescence probes. Many novel fluorophores with improved brightness (almost reaching the theoretical limit), redshifted emission, highly improved photostability, and biocompatibility greatly helped advance fluorescence detection and imaging. However, autofluorescence, scattering of excitation light, and Raman scattering remain fundamental limiting problems that drastically limit detection sensitivity. Similarly, significant efforts were focused on reducing the background. High-quality sample purification eliminates the majority of autofluorescence background and in a limited confocal volume allows detection to reach the ultimate sensitivity to a single molecule. However, detection and imaging in physiological conditions does not allow for any sample (cells or tissue) purification, forcing us to face a fundamental limitation. A significant improvement in limiting background can be achieved when fluorophores with a long fluorescence lifetime are used, and time-gated detection is applied. However, all long-lived fluorophores present low brightness, limiting the potential improvement. We recently proposed to utilize multipulse excitation (burst of pulses) to enhance the relative signal of long-lived fluorophores and significantly improve the SBR. Herein, we present results obtained with multipulse excitation and compare them with standard single-pulse excitation. Subtraction of images obtained with a single pulse from those obtained with pulse burst (differential image) highly limits background and instrumental noise resulting in more specific/sensitive detection and allows to achieve greater imaging depth in highly scattering media, including skin and tissue.


Subject(s)
Fluorescent Dyes , Optical Imaging , Fluorescent Dyes/chemistry , Spectrometry, Fluorescence/methods
9.
Anal Chem ; 94(12): 5062-5068, 2022 03 29.
Article in English | MEDLINE | ID: mdl-35286067

ABSTRACT

This article presents a novel approach to increase the detection sensitivity of trace amounts of DNA in a sample by employing Förster resonance energy transfer (FRET) between intercalating dyes. Two intercalators that present efficient FRET were used to enhance sensitivity and improve specificity in detecting minute amounts of DNA. Comparison of steady-state acceptor emission spectra with and without the donor allows for simple and specific detection of DNA (acceptor bound to DNA) down to 100 pg/µL. When utilizing as an acceptor a dye with a significantly longer lifetime (e.g., ethidium bromide bound to DNA), multipulse pumping and time-gated detection enable imaging/visualization of picograms of DNA present in a microliter of an unprocessed sample or DNA collected on a swab or other substrate materials.


Subject(s)
Fluorescence Resonance Energy Transfer , Intercalating Agents , Coloring Agents , DNA/genetics , Ethidium , Fluorescent Dyes
10.
Methods Appl Fluoresc ; 10(2)2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35042210

ABSTRACT

We studied room temperature phosphorescence of tryptophan (TRP) embedded in poly (vinyl alcohol) films. With UV (285 nm) excitation, the phosphorescence spectrum of tryptophan appears at about 460 nm. We also observed the TRP phosphorescence with blue light excitation at 410 nm, well outside of the S0→S1absorption. This excitation reaches the triplet state of tryptophan directly without the involvement of the singlet excited state. The phosphorescence lifetime of tryptophan is in the sub-millisecond range. The long-wavelength direct excitation to the triplet state results in high phosphorescence anisotropy which can be useful in macromolecule dynamics study via time-resolved phosphorescence.


Subject(s)
Tryptophan
11.
Analyst ; 146(21): 6520-6527, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34559174

ABSTRACT

This report presents a novel approach for detecting and visualizing small to trace amounts of DNA in a sample. By utilizing both the change in emission spectrum and change in fluorescence lifetime, there is a significant increase in detection sensitivity allowing for the imaging/visualizing of a picograms amount of DNA in a microliters volume. As in the previous reports, one of the oldest DNA intercalators, Ethidium Bromide (EtBr), is employed as a model system. With this new approach, it is feasible to visualize just a few hundred picograms of DNA without the need for prior DNA amplification. The sensitivity can later be largely improved by using an intercalator that exhibits a higher affinity to DNA and a larger fluorescence change upon binding to DNA (e.g., ethidium homodimer, YOYO, or Diamond nucleic acid dyes).


Subject(s)
DNA , Intercalating Agents , DNA/genetics , Nucleic Acid Amplification Techniques
12.
Int J Mol Sci ; 22(14)2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34299377

ABSTRACT

The results of time-resolved fluorescence measurements of flavin mononucleotide (FMN) in rigid polyvinyl alcohol films (PVA) demonstrate that fluorescence intensity decays are strongly accelerated in the presence of fluorescent dimers and nonradiative energy transfer processes. The fluorescence decay originating both from H and J dimer states of FMN was experimentally observed for the first time. The mean fluorescence lifetimes for FMN dimers were obtained: τfl = 2.66 ns (at λexc = 445 nm) and τfl = 2.02 (at λexc = 487 nm) at λobs = 600 nm and T = 253 K from H and J state of dimers, respectively. We show that inhomogeneous orientational broadening of energy levels (IOBEL) affects the shape of the fluorescence decay and leads to the dependence of the average monomer fluorescence lifetime on excitation wavelength. IOBEL affected the nonradiative energy transfer and indicated that different flavin positioning in the protein pocket could (1) change the spectroscopic properties of flavins due to the existence of "blue" and "red" fluorescence centers, and (2) diminish the effectiveness of energy transfer between FMN molecules.


Subject(s)
Flavin Mononucleotide/chemistry , Polyvinyl Alcohol/chemistry , Dimerization , Energy Transfer , Fluorescence Polarization/methods , Polymers/chemistry , Spectrometry, Fluorescence/methods
13.
Methods Appl Fluoresc ; 9(3)2021 May 24.
Article in English | MEDLINE | ID: mdl-34032610

ABSTRACT

Fluorescence is an established technology for studying molecular processes and molecular interactions. More recently fluorescence became a leading method for detection, sensing, medical diagnostics, biotechnology, imaging, DNA analysis, and gene expression. Consequently, precise and accurate measurements in various conditions have become more critical for proper result interpretations. Previously, in Part 1, we discussed inner filter effect type I, which is a consequence of the instrumental geometrical sensitivity factor and absorption of the excitation. In this part, we analyze inner filter effect type II and discuss the practical consequences for fluorescence measurements in samples of high optical density (absorbance/scattering). We consider both the standard square and front-face experimental configurations, discuss experimental approaches to limit/mitigate the effect and discuss methods for correcting and interpreting experimental results.

14.
Materials (Basel) ; 13(13)2020 Jul 06.
Article in English | MEDLINE | ID: mdl-32640655

ABSTRACT

The investigation of innovative label-free α-amino acids detection methods represents a crucial step for the early diagnosis of several diseases. While 1,8-diazafluoren-9-one (DFO) is known in forensic application because of the fluorescent products by reacting with the amino acids present in the papillary exudate, its application for diagnostic purposes has not been fully investigated. The stabilization of DFO over a transparent substrate allows its complexation with biomolecules for the detection of α-amino acids. In this study, DFO was immobilized into a titanium dioxide (TiO2) matrix for the fluorescence detection of glycine, as a target α-amino acid (a potential marker of the urogenital tract cancers). The DFO/TiO2 composite was characterized by atomic force microscopy, spectroscopic ellipsometry, fluorescence spectroscopy and fluorescence microscopy. The performed fluorescent studies indicate spectacular formation of aggregates at higher concentration. The measurements performed using various fluorescence and microscopic techniques together with the suitable analysis show that the aggregates are able to emit short-lived fluorescence.

15.
Methods Appl Fluoresc ; 8(3): 033002, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32428893

ABSTRACT

Fluorescence technologies have been the preferred method for detection, analytical sensing, medical diagnostics, biotechnology, imaging, and gene expression for many years. Fluorescence becomes essential for studying molecular processes with high specificity and sensitivity through a variety of biological processes. A significant problem for practical fluorescence applications is the apparent non-linearity of the fluorescence intensity resulting from inner-filter effects, sample scattering, and absorption of intrinsic components of biological samples. Sample absorption can lead to the primary inner filter effect (Type I inner filter effect) and is the first factor that should be considered. This is a relatively simple factor to be controlled in any fluorescence experiment. However, many previous approaches have given only approximate experimental methods for correcting the deviation from expected results. In this part we are discussing the origin of the primary inner filter effect and presenting a universal approach for correcting the fluorescence intensity signal in the full absorption range. Importantly, we present direct experimental results of how the correction works. One considers problems emerging from varying absorption across its absorption spectrum for all fluorophores. We use Rhodamine 800 and demonstrate how to properly correct the excitation spectra in a broad wavelength range. Second is the effect of an inert absorber that attenuates the intensity of the excitation beam as it travels through the cuvette, which leads to a significant deviation of observed results. As an example, we are presenting fluorescence quenching of a tryptophan analog, NATA, by acrylamide and we show how properly corrected results compare to the initial erroneous results. The procedure is generic and applies to many other applications like quantum yield determination, tissue/blood absorption, or acceptor absorption in FRET experiments.

16.
J Photochem Photobiol B ; 208: 111897, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32447191

ABSTRACT

We studied the luminescence properties of indole in poly (vinyl alcohol) (PVA) film. The indole molecules are effectively immobilized in this polymer film and display both fluorescence and phosphorescence emission at room temperature. We noticed that the phosphorescence of indole in PVA film can be effectively excited at a longer wavelength than its typical singlet to triplet population route involving intersystem crossing. The maximum of the phosphorescence excitation is about 410 nm which corresponds to the energy of indole's triplet state. Interestingly, the phosphorescence anisotropy excited with the longer wavelength (405 nm) is positive and reaches a value of about 0.25 in contrast to the phosphorescence anisotropy excited within the indole singlet absorption spectrum (290 nm), which is negative. Very different temperature dependences have been observed for fluorescence and phosphorescence of indole in PVA film. While fluorescence depends minimally, the phosphorescence decreases with temperature dramatically. The fluorescence lifetime was measured to be a single component 4.78 ns while the intensity weighted average phosphorescence lifetime with 290 nm and 405 nm excitations were 6.57 and 5.62 ms, respectively. We believe that the possibility of the excitation of indole phosphorescence in the blue region of visible light and its high anisotropy opens a new avenue for future protein studies.


Subject(s)
Indoles/chemistry , Polyvinyl Alcohol/chemistry , Quantum Theory , Spectrometry, Fluorescence , Temperature
17.
J Pharmacol Exp Ther ; 373(1): 113-121, 2020 04.
Article in English | MEDLINE | ID: mdl-31941718

ABSTRACT

Reconstituted high-density lipoprotein (HDL) containing apolipoprotein A-I (Apo A-I) mimics the structure and function of endogenous (human plasma) HDL due to its function and potential therapeutic utility in atherosclerosis, cancer, neurodegenerative diseases, and inflammatory diseases. Recently, a new class of HDL mimetics has emerged, involving peptides with amino acid sequences that simulate the the primary structure of the amphipathic alpha helices within the Apo A-I protein. The findings reported in this communication were obtained using a similar amphiphilic peptide (modified via conjugation of a myristic acid residue at the amino terminal aspartic acid) that self-assembles (by itself) into nanoparticles while retaining the key features of endogenous HDL. The studies presented here involve the macromolecular assembly of the myristic acid conjugated peptide (MYR-5A) into nanomicellar structures and its characterization via steady-state and time-resolved fluorescence spectroscopy. The structural differences between the free peptide (5A) and MYR-5A conjugate were also probed, using tryptophan fluorescence, FÓ§rster resonance energy transfer (FRET), dynamic light scattering, and gel exclusion chromatography. To our knowledge, this is the first report of a lipoprotein assembly generated from a single ingredient and without a separate lipid component. The therapeutic utility of these nanoparticles (due to their capablity to incorporate a wide range of drugs into their core region for targeted delivery) was also investigated by probing the role of the scavenger receptor type B1 in this process. SIGNIFICANCE STATEMENT: Although lipoproteins have been considered as effective drug delivery agents, none of these nanoformulations has entered clinical trials to date. A major challenge to advancing lipoprotein-based formulations to the clinic has been the availability of a cost-effective protein or peptide constituent, needed for the assembly of the drug/lipoprotein nanocomplexes. This report of a robust, spontaneously assembling drug transport system from a single component could provide the template for a superior, targeted drug delivery strategy for therapeutics of cancer and other diseases (Counsell and Pohland, 1982).


Subject(s)
Biomimetic Materials/chemistry , Drug Carriers/chemistry , Lipoproteins, HDL/chemistry , Nanoparticles/chemistry , Spectrometry, Fluorescence/methods , Amino Acid Sequence , Biomimetic Materials/analysis , Drug Carriers/analysis , Lipoproteins, HDL/analysis , Lipoproteins, HDL/genetics , Nanoparticles/analysis
18.
Methods Appl Fluoresc ; 7(3): 037001, 2019 May 16.
Article in English | MEDLINE | ID: mdl-31067513

ABSTRACT

Intrinsic emission from typical filters can unexpectedly contribute to the total measured signal in a fluorescence system. This emission becomes even more problematic for in-line geometry measurements where the excitation light can directly excite the emission filter. Potassium dichromate has minimal intrinsic fluorescence even with ultra-violet (UV) excitation. We show that a liquid sample can be tuned for its transmission properties by adding a base to the solution. This makes it attractive for use as an optical filter. In addition, when embedded in poly (vinyl alcohol) (PVA) film, potassium dichromate is even less fluorescent. These films can be cut and molded into practically any size or shape. Thus non-fluorescent, modular and cheap filters composed of potassium dichromate embedded in a PVA film is proposed to eliminate this unwanted emission and is suitable for a wide variety of devices and applications.

19.
Adv Drug Deliv Rev ; 151-152: 262-288, 2019.
Article in English | MEDLINE | ID: mdl-29410158

ABSTRACT

Non-invasive measurement of drug-target engagement can provide critical insights in the molecular pharmacology of small molecule drugs. Fluorescence polarization/fluorescence anisotropy measurements are commonly employed in protein/cell screening assays. However, the expansion of such measurements to the in vivo setting has proven difficult until recently. With the advent of high-resolution fluorescence anisotropy microscopy it is now possible to perform kinetic measurements of intracellular drug distribution and target engagement in commonly used mouse models. In this review we discuss the background, current advances and future perspectives in intravital fluorescence anisotropy measurements to derive pharmacokinetic and pharmacodynamic measurements in single cells and whole organs.


Subject(s)
Drug Discovery , Fluorescence Polarization , Animals , High-Throughput Screening Assays , Humans
20.
J Biomed Opt ; 23(6): 1-4, 2018 06.
Article in English | MEDLINE | ID: mdl-29935016

ABSTRACT

Total internal reflection microscopy (TIRF) has been a powerful tool in biological research. The most valuable feature of the method has been the ability to image 100- to 200-nm-thick layer of cell features adjacent to a coverslip, such as membrane lipids, membrane receptors, and structures proximal-to-basal membranes. Here, we demonstrate an alternative method of imaging thin-layer proximal-to-basal membranes by placing a sample on a high refractive index coverslip covered by a thin layer of gold. The sample is illuminated using the Kretschmann method (i.e., from the top to an aqueous medium). Fluorophores that are close to the metal surface induce surface plasmons in the metal film. Fluorescence from fluorophores near the metal surface couple with surface plasmons allowing them to penetrate the metal surface and emerge at a surface plasmon coupled emission angle. The thickness of the detection layer is further reduced in comparison with TIRF by metal quenching of fluorophores at a close proximity (below 10 nm) to a surface. Fluorescence is collected by a high NA objective and imaged by EMCCD or converted to a signal by avalanche photodiode fed by a single-mode optical fiber inserted in the conjugate image plane of the objective. The system avoids complications of through-the-objective TIRF associated with shared excitation and emission light path, has thin collection thickness, produces excellent background rejection, and is an effective method to study molecular motion.


Subject(s)
Astrocytes/cytology , Microscopy, Fluorescence/methods , Surface Plasmon Resonance/methods , Fluorescence , Fluorescent Dyes , Gold/chemistry , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...