Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 11(12): 5564-73, 2011 Dec 14.
Article in English | MEDLINE | ID: mdl-22047629

ABSTRACT

Responsive hybrid nanomaterials with well-defined properties are of significant interest for the development of biosensors with additional applications in tissue engineering and drug delivery. Here, we present a detailed characterization using UV-vis spectroscopy and small angle X-ray scattering of a hybrid material comprised of polypeptide-decorated gold nanoparticles with highly controllable assembly properties. The assembly is triggered by a folding-dependent bridging of the particles mediated by the heteroassociation of immobilized helix-loop-helix polypeptides and a complementary nonlinear polypeptide present in solution. The polypeptides are de novo designed to associate and fold into a heterotrimeric complex comprised of two disulfide-linked four-helix bundles. The particles form structured assemblies with a highly defined interparticle gap (4.8±0.4 nm) that correlates to the size of the folded polypeptides. Transitions in particle aggregation dynamics, mass-fractal dimensions and ordering, as a function of particle size and the concentration of the bridging polypeptide, are observed; these have significant effects on the optical properties of the assemblies. The assembly and ordering of the particles are highly complex processes that are affected by a large number of variables including the number of polypeptides bridging the particles and the particle mobility within the aggregates. A fundamental understanding of these processes is of paramount interest for the development of novel hybrid nanomaterials with tunable structural and optical properties and for the optimization of nanoparticle-based colorimetric biodetection strategies.


Subject(s)
Gold/chemistry , Nanoparticles/chemistry , Peptides/chemistry , Protein Folding , Scattering, Small Angle , Spectrophotometry, Ultraviolet , X-Ray Diffraction
2.
J Synchrotron Radiat ; 14(Pt 6): 471-6, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17960028

ABSTRACT

Coherent X-ray diffraction is a useful technique for understanding the structure of compact objects including those which can be represented as phase objects. X-rays are highly penetrating and have wavelengths very close to atomic spacing. In this work, gold nanocrystals (on a reflecting substrate) were imaged at the Advanced Photon Source and found to produce a novel double diffraction pattern. Simulations were carried out to explain the experimental diffraction pattern in terms of reflection of the incident beam from the substrate to produce a standing wave. The experimental data were then phased to produce a two-dimensional real-space image of the gold. It is expected that the standing-wave illumination may be a useful tool to aid the convergence of the phasing algorithms for nanocrystals.

SELECTION OF CITATIONS
SEARCH DETAIL
...