Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 6379, 2022 10 31.
Article in English | MEDLINE | ID: mdl-36316310

ABSTRACT

Despite the importance of high-latitude surface energy budgets (SEBs) for land-climate interactions in the rapidly changing Arctic, uncertainties in their prediction persist. Here, we harmonize SEB observations across a network of vegetated and glaciated sites at circumpolar scale (1994-2021). Our variance-partitioning analysis identifies vegetation type as an important predictor for SEB-components during Arctic summer (June-August), compared to other SEB-drivers including climate, latitude and permafrost characteristics. Differences among vegetation types can be of similar magnitude as between vegetation and glacier surfaces and are especially high for summer sensible and latent heat fluxes. The timing of SEB-flux summer-regimes (when daily mean values exceed 0 Wm-2) relative to snow-free and -onset dates varies substantially depending on vegetation type, implying vegetation controls on snow-cover and SEB-flux seasonality. Our results indicate complex shifts in surface energy fluxes with land-cover transitions and a lengthening summer season, and highlight the potential for improving future Earth system models via a refined representation of Arctic vegetation types.


Subject(s)
Ecosystem , Permafrost , Seasons , Arctic Regions , Climate Change
2.
MethodsX ; 8: 101331, 2021.
Article in English | MEDLINE | ID: mdl-34430238

ABSTRACT

The majority of climate models predict severe increases in future temperature and precipitation in the Arctic. Increases in temperature and precipitation can lead to an intensification of the hydrologic cycle that strongly impacts Arctic environmental conditions. In order to investigate effects of future precipitation scenarios on ecosystems, precipitation manipulation experiments are being performed to simulate drought and extreme precipitation conditions. However, most of the existing research so far has been unevenly distributed, primarily focusing on temperate grasslands and woodlands. Despite large changes in the predicted precipitation and potentially high sensitivity of the Arctic tundra ecosystem to these changes, it is among the most understudied ecosystems for precipitation manipulation experiments. Gherardi and Sala (2013) presented a design for precipitation manipulation experiments that, relative to other methods at the time, was cheap, simplistic, and easily reproducible. In this study, we:•Present modifications to the original Gherardi and Sala (2013) design that are adapted to cold, harsh conditions, such as those present in the Siberian Arctic tundra.•Provide a detailed documentation of the improved design.•Validate our modified experimental design based on the first two years of our experiment.

SELECTION OF CITATIONS
SEARCH DETAIL
...