Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 51(1): 361-374, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34897329

ABSTRACT

Physical properties, i.e. electrical resistivity (4.2-800 K), Seebeck coefficient (300-800 K), specific heat (2-110 K), Vickers hardness and elastic moduli (RT), have been defined for single-phase compounds with slightly nonstoichiometric compositions: Ti2.13Ni2Sn0.87, Zr2.025Ni2Sn0.975, and Hf2.055Ni2Sn0.945. From X-ray single crystal and TEM analyses, Ti2+xNi2Sn1-x, x ∼ 0.13(1), is isotypic with the U2Pt2Sn-type (space group P42/mnm, ternary ordered version of the Zr3Al2-type), also adopted by the homologous compounds with Zr and Hf. For all three polycrystalline compounds (relative densities >95%) the electrical resistivity of the samples is metallic-like with dominant scattering from static defects mainly conditioned by off-stoichiometry. Analyses of the specific heat curves Cpvs. T and Cp/T vs. T2 reveal Sommerfeld coefficients of γTi2Ni2Sn = 14.3(3) mJ mol-1 K-2, γZr2Ni2Sn = 10(1) mJ mol-1 K-2, γHf2Ni2Sn = 9.1(5) mJ mol-1 K-2 and low-temperature Debye-temperatures: θLTD = 373(7)K, 357(14)K and 318(10)K. Einstein temperatures were in the range of 130-155 K. Rather low Seebeck coefficients (<15 µV K-1), power factors (pf < 0.07 mW mK-2) and an estimated thermal conductivity of λ < 148 mW cm-1 K-1 yield thermoelectric figures of merit ZT < 0.007 at ∼800 K. Whereas for polycrystalline Zr2Ni2Sn elastic properties were determined by resonant ultrasound spectroscopy (RUS): E = 171 GPa, ν = 0.31, G = 65.5 GPa, and B = 147 GPa, the accelerated mechanical property mapping (XPM) mode was used to map the hardness and elastic moduli of T2Ni2Sn. Above 180 K, Zr2Ni2Sn reveals a quasi-linear expansion with CTE = 15.4 × 10-6 K-1. The calculated density of states is similar for all three compounds and confirms a metallic type of conductivity. The isosurface of elf shows a spherical shape for Ti/Zr/Hf atoms and indicates their ionic character, while the [Ni2Sn]n- sublattice reflects localizations around the Ni and Sn atoms with a large somewhat diffuse charge density between the closest Ni atoms.

2.
Dalton Trans ; 47(3): 879-897, 2018 Jan 15.
Article in English | MEDLINE | ID: mdl-29255824

ABSTRACT

Investigations of phase relations in the ternary system Ti-Fe-Sb show that the single-phase region of the Heusler phase is significantly shifted from stoichiometric TiFeSb (reported previously in the literature) to the Fe-rich composition TiFe1.33Sb. This compound also exhibits Fe/Ti substitution according to Ti1+xFe1.33-xSb (-0.17 ≤ x ≤ 0.25 at 800 °C). Its stability, crystal symmetry and site preference were established by using X-ray powder techniques and were backed by DFT calculations. The ab initio modeling revealed TiFe1.375Sb to be the most stable composition and established the mechanisms behind Fe/Ti substitution for the region Ti1+xFe1.33-xSb, and of the Fe/Co substitution within the isopleth TiFe1.33Sb-TiCoSb. The calculated residual resistivity of Ti1+xFe1.33-xSb, as well as of the isopleths TiFe1.33Sb-TiCoSb, TiFe0.665Co0.5Sb-TiCoSb0.75Sn0.25 and TiFe0.33Co0.75Sb-TiCoSb0.75Sn0.25, are in a good correlation with the experimental data. From magnetic measurements and 57Fe Mössbauer spectrometry, a paramagnetic behavior down to 4.2 K was observed for TiFe1.33Sb, with a paramagnetic Curie-Weiss temperature of -8 K and an effective moment of 1.11µB per Fe. Thermoelectric (TE) properties were obtained for the four isopleths Ti1+xFe1.33-xSb, TiFe1.33Sb-TiCoSb, TiFe0.665Co0.5Sb-TiCoSb0.75Sn0.25 and TiFe0.29Co0.78Sb-TiCoSb0.75Sn0.25 by measurements of electrical resistivity (ρ), Seebeck coefficient (S) and thermal conductivity (λ) at temperatures from 300 K to 823 K allowing the calculation of the dimensionless figure of merit (ZT). Although p-type Ti1+xFe1.33-xSb indicates a semi-conducting behavior for the Fe rich composition (x = -0.133), the conductivity changes to a metallic type with increasing Ti content. The highest ZT = 0.3 at 800 K was found for the composition TiFe1.33Sb. The TE performance also increases with Fe/Co substitution and reaches ZT = 0.42 for TiCo0.5Fe0.665Sb. No further increase of the TE performance was observed for the Sb/Sn substituted compounds within the sections TiFe0.665Co0.5Sb-TiCoSb0.75Sn0.25 and TiFe0.33Co0.75Sb-TiCoSb0.75Sn0.25. However, ZT-values could be enhanced by about 12% via the optimization of the preparation route (ball-mill conditions and heat treatments).

3.
Dalton Trans ; 45(27): 11071-100, 2016 Jul 05.
Article in English | MEDLINE | ID: mdl-27328131

ABSTRACT

Novel filled skutterudites BayNi4Sb12-xSnx (ymax = 0.93) have been prepared by arc melting followed by annealing at 250, 350 and 450 °C up to 30 days in vacuum-sealed quartz vials. Extension of the homogeneity region, solidus temperatures and structural investigations were performed for the skutterudite phase in the ternary Ni-Sn-Sb and in the quaternary Ba-Ni-Sb-Sn systems. Phase equilibria in the Ni-Sn-Sb system at 450 °C were established by means of Electron Probe Microanalysis (EPMA) and X-ray Powder Diffraction (XPD). With rather small cages Ni4(Sb,Sn)12, the Ba-Ni-Sn-Sb skutterudite system is perfectly suited to study the influence of filler atoms on the phonon thermal conductivity. Single-phase samples with the composition Ni4Sb8.2Sn3.8, Ba0.42Ni4Sb8.2Sn3.8 and Ba0.92Ni4Sb6.7Sn5.3 were used to measure their physical properties, i.e. temperature dependent electrical resistivity, Seebeck coefficient and thermal conductivity. The resistivity data demonstrate a crossover from metallic to semiconducting behaviour. The corresponding gap width was extracted from the maxima in the Seebeck coefficient data as a function of temperature. Single crystal X-ray structure analyses at 100, 200 and 300 K revealed the thermal expansion coefficients as well as Einstein and Debye temperatures for Ba0.73Ni4Sb8.1Sn3.9 and Ba0.95Ni4Sb6.1Sn5.9. These data were in accordance with the Debye temperatures obtained from the specific heat (4.4 K < T < 140 K) and Mössbauer spectroscopy (10 K < T < 290 K). Rather small atom displacement parameters for the Ba filler atoms indicate a severe reduction in the "rattling behaviour" consistent with the high levels of lattice thermal conductivity. The elastic moduli, collected from Resonant Ultrasonic Spectroscopy ranged from 100 GPa for Ni4Sb8.2Sn3.8 to 116 GPa for Ba0.92Ni4Sb6.7Sn5.3. The thermal expansion coefficients were 11.8 × 10(-6) K(-1) for Ni4Sb8.2Sn3.8 and 13.8 × 10(-6) K(-1) for Ba0.92Ni4Sb6.7Sn5.3. The room temperature Vickers hardness values vary within the range from 2.6 GPa to 4.7 GPa. Severe plastic deformation via high-pressure torsion was used to introduce nanostructuring; however, the physical properties before and after HPT showed no significant effect on the materials thermoelectric behaviour.

4.
Phys Chem Chem Phys ; 17(37): 24248-61, 2015 Oct 07.
Article in English | MEDLINE | ID: mdl-26327293

ABSTRACT

The novel compounds Ba5{V,Nb}12Sb19+x, initially found in diffusion zone experiments between Ba-filled skutterudite Ba0.3Co4Sb12 and group V transition metals (V,Nb,Ta), were synthesized via solid state reaction and were characterized by means of X-ray (single crystal and powder) diffraction, electron probe microanalysis (EPMA), and physical (transport and mechanical) properties measurements. Ba5V12Sb19.41 (a = 1.21230(1) nm, space group P4[combining overline]3m; RF(2) = 0.0189) and Ba5Nb12Sb19.14 (a = 1.24979(2) nm, space group P4[combining overline]3m; RF(2) = 0.0219) are the first representatives of the Ba5Ti12Sb19+x-type, however, in contrast to the aristotype, the structure of Ba5V12Sb19.41 shows additional atom disorder. Temperature dependent ADPs and specific heat of Ba5V12Sb19.41 confirmed the rattling behaviour of Ba1,2 and Sb7 atoms within the framework built by V and Sb atoms. Electrical resistivity of both compounds show an upturn at low temperature, and a change from p- to n-type conductivity above 300 K in Ba4.9Nb12Sb19.4. As expected from the complex crystal structure and the presence of defects and disorder, the thermal conductivity is suppressed and lattice thermal conductivity of ∼0.43 W m(-1) K(-1) is near values typical for amorphous systems. Vicker's hardness of (3.8 ± 0.1) GPa (vanadium compound) and (3.5 ± 0.2) GPa (niobium compound) are comparable to Sb-based filled skutterudites. However, the Young's moduli measured by nanoindentation for these compounds EI(Ba4.9V12Sb19.0) = (85 ± 2) GPa and EI(Ba4.9Nb12Sb19.4) = (79 ± 5) GPa are significantly smaller than those of skutterudites, which range from about 130 to 145 GPa.

5.
J Phys Condens Matter ; 25(10): 106002, 2013 Mar 13.
Article in English | MEDLINE | ID: mdl-23389037

ABSTRACT

The crystal structure of Ti(8)(Ti(x)Mn(1-x))(6)Mn(39), x = 0.187, was obtained from x-ray single-crystal diffraction data, confirming it to have rhombohedral symmetry (space group [Formula: see text]; a(hex) = 1.100 70(2) nm, c(hex) = 1.944 11(4) nm; R(F) = 0.0293) and isotypism with the prototype Mo(0.38)Cr(0.16)Co(0.46) (the so-called R-phase). On the basis of electron probe micro-analyser results and structure determination, the homogeneity region of the phase TiMn(~4) was determined for temperatures in the range 800 °C < T < 1200 °C and is in between 16.0 at.% Ti and 20 at.% Ti. Various physical properties, determined in the temperature range from ~2 K to room temperature, characterize the compound with composition TiMn(4.26) as a metallic spin fluctuation system, evidenced from a T(3)lnT dependence of the heat capacity in combination with large values of the electronic Sommerfeld constant of the order of 140 mJ mol(-1) K(-2). The occurrence of a small anomaly in the heat capacity and magnetization data around 10 K is attributed to a scenario involving spin freezing phenomena, since a fraction of the order of 10% of all Mn-Mn distances within the unit cell are above a critical distance, where Mn atoms carry a spontaneous magnetic moment.

6.
Inorg Chem ; 52(2): 931-43, 2013 Jan 18.
Article in English | MEDLINE | ID: mdl-23286379

ABSTRACT

Phase relations and solidification behavior in the Ge-rich part of the phase diagram have been determined in two isothermal sections at 700 and 750 °C and in a liquidus projection. A reaction scheme has been derived in the form of a Schulz-Scheil diagram. Phase equilibria are characterized by three ternary compounds: τ(1)-BaRhGe(3) (BaNiSn(3)-type) and two novel phases, τ(2)-Ba(3)Rh(4)Ge(16) and τ(3)-Ba(5)Rh(15)Ge(36-x), both forming in peritectic reactions. The crystal structures of τ(2) and τ(3) have been elucidated from single-crystal X-ray intensity data and were found to crystallize in unique structure types: Ba(3)Rh(4)Ge(16) is tetragonal (I4/mmm, a = 0.65643(2) nm, c = 2.20367(8) nm, and R(F) = 0.0273), whereas atoms in Ba(5)Rh(15)Ge(36-x) (x = 0.25) arrange in a large orthorhombic unit cell (Fddd, a = 0.84570(2) nm, b = 1.4725(2) nm, c = 6.644(3) nm, and R(F) = 0.034). The body-centered-cubic superstructure of binary Ba(8)Ge(43)□(3) was observed to extend at 800 °C to Ba(8)Rh(0.6)Ge(43)□(2.4), while the clathrate type I phase, κ(I)-Ba(8)Rh(x)Ge(46-x-y)□(y), reveals a maximum solubility of x = 1.2 Rh atoms in the structure at a vacancy level of y = 2.0. The cubic lattice parameter increases with increasing Rh content. Clathrate I decomposes eutectoidally at 740 °C: κ(I) ⇔ (Ge) + κ(IX) + τ(2). A very small solubility range is observed at 750 °C for the clathrate IX, κ(IX)-Ba(6)Rh(x)Ge(25-x) (x ∼ 0.16). Density functional theory calculations have been performed to derive the enthalpies of formation and densities of states for various compositions Ba(8)Rh(x)Ge(46-x) (x = 0-6). The physical properties have been investigated for the phases κ(I), τ(1), τ(2), and τ(3), documenting a change from thermoelectric (κ(I)) to superconducting behavior (τ(2)). The electrical resistivity of κ(I)-Ba(8)Rh(1.2)Ge(42.8)□(2.0) increases almost linearly with the temperature from room temperature to 730 K, and the Seebeck coefficient is negative throughout the same temperature range. τ(1)-BaRhGe(3) has a typical metallic electrical resistivity. A superconducting transition at T(C) = 6.5 K was observed for τ(2)-Ba(3)Rh(4)Ge(16), whereas τ(3)-Ba(5)Rh(15)Ge(35.75) showed metallic-like behavior down to 4 K.

7.
Dalton Trans ; 41(29): 8839-49, 2012 Aug 07.
Article in English | MEDLINE | ID: mdl-22699461

ABSTRACT

The phase relations, crystal structure and thermoelectric properties of the type-I solid solution Ba(8)Ni(x)Si(46-x) were investigated. Based on X-ray diffraction, differential thermal analysis and electron probe microanalysis data, a partial phase diagram was constructed for the Si-rich part of ternary system Ba-Ni-Si at 800 °C. The solubility range of Ni in the clathrate-I phase at 800 °C was determined (2.9 ≤x≤ 3.8) and thermoelectric properties, namely electrical resistivity, Seebeck-coefficient and thermal conductivity, were measured in the temperature range from 300 to 850 K. A shift of the thermoelectric properties from a predominantly metallic to a more semiconducting behavior was observed for an increasing Ni-content. Density functional calculations revealed a significant decrease of the gap width in the density of states induced by the incorporation of Ni. Electrical resistivity and Seebeck coefficients for Ba(8)Ni(x)Si(46-x) with 3.3 ≤x≤ 3.8 have been modeled within the rigid band approximation.

8.
J Phys Condens Matter ; 23(27): 275601, 2011 Jul 13.
Article in English | MEDLINE | ID: mdl-21685555

ABSTRACT

High temperature thermoelectric (TE) properties for triple-filled skutterudites (Sr(x)Ba(x)Yb1₋2x)(y)Co4Sb12 were investigated for alloy compositions in two sections of the system: (a) for x = 0.25 with a filling fraction y ranging from 0.1 to 0.25 and (b) for 0 < x < 0.5 and y = 0.11 + 0.259x. The representation of the figure of merit, ZT, as a function of skutterudite composition, defined the compositional range (0.25 < x < 0.4; 0.18 < y < 0.24) with ZT over 1.4 at 800 K. It was shown that an enhanced TE performance for these triple-filled skutterudites is caused by low electrical resistivities and low lattice thermal conductivities, as well as by a fine tuning of the chemical composition. Low temperature measurements for the samples with the highest ZT values showed that even a small change of the filler ratios changes the contribution of scattering effects, the carrier concentration and the mobility.

9.
Inorg Chem ; 50(10): 4537-47, 2011 May 16.
Article in English | MEDLINE | ID: mdl-21491895

ABSTRACT

Ti(2)(Ti(0.16)Ni(0.43)Al(0.41))(3) is a novel compound (labeled as τ(6)) in the Ti-rich region of the Ti-Ni-Al system in a limited temperature range 870 < T < 980 °C. The structure of τ(6)-Ti(2)(Ti,Ni,Al)(3) was solved from a combined analysis of X-ray single crystal and neutron powder diffracton data (space group C2/m, a = 1.85383(7) nm, b = 0.49970(2) nm, c = 0.81511(3) nm, and ß = 99.597(3)°). τ(6)-Ti(2)(Ti,Ni,Al)(3) as a variant of the V(2)(Co(0.57)Si(0.43))(3)-type is a combination of slabs of the MgZn(2)-Laves type and slabs of the Zr(4)Al(3)-type forming a tetrahedrally close-packed Frank-Kasper structure with pentagon-triangle main layers. Titanium atoms occupy the vanadium sites, but Ti/Ni/Al atoms randomly share the (Co/Si) sites of V(2)(Co(0.57)Si(0.43))(3). Although τ(6) shows a random replacement on 6 of the 11 atom sites, it has no significant homogeneity range (~1 at. %). The composition of τ(6) changes slightly with temperature. DSC/DTA runs (1 K/min) were not sufficient to define proper reaction temperatures due to slow reaction kinetics. Therefore, phase equilibria related to τ(6) were derived from X-ray powder diffraction in combination with EPMA on alloys, which were annealed at carefully set temperatures and quenched. τ(6) forms from a peritectoid reaction η-(Ti,Al)(2)Ni + τ(3) + α(2) ↔ τ(6) at 980 °C and decomposes in a eutectoid reaction τ(6) ↔ η + τ(4) + α(2) at 870 °C. Both reactions involve the η-(Ti,Al)(2)Ni phase, for which the atom distribution was derived from X-ray single crystal intensity data, revealing Ti/Al randomly sharing the 48f- and 16c-positions in space group Fd3̅m (Ti(2)Ni-type, a = 1.12543(3) nm). There was no residual electron density at the octahedral centers of the crystal structure ruling out impurity stabilization. Phase equilibria involving the τ(6) phase have been established for various temperatures (T = 865, 900, 925, 950, 975 °C, and subsolidus). The reaction isotherms concerning the τ(6) phase have been established and are summarized in a Schultz-Scheil diagram.

10.
J Phys Condens Matter ; 21(38): 385404, 2009 Sep 23.
Article in English | MEDLINE | ID: mdl-21832369

ABSTRACT

Novel ternary type-I clathrate compounds Ba(8){Zn,Cd}(x)Si(46-x), x∼7 have been synthesized from the elements by melting and reacting in quartz ampoules. Structural investigations for both compounds, i.e. x-ray single-crystal data at 300, 200 and 100 K for Ba(8)Zn(7)Si(39) and Rietveld data for Ba(8)Cd(7)Si(39), confirm cubic primitive symmetry consistent with the space group type [Formula: see text] (a(Ba(8)Zn(7)Si(39)) = 1.043 72(1) nm; a(Ba(8)Cd(7)Si(39)) = 1.058 66(3) nm). Whereas for Ba(8)Zn(7)Si(39) site 16i is completely occupied by Si atoms, a random atom distribution with different Zn/Si ratio exists for the two sites, 6d (0.77Zn+0.23Si) and 24k (0.91Si+0.09Zn). No vacancies are encountered and all atom sites are fully occupied. This atom distribution is independent of temperature. Rietveld refinements for Ba(8)Cd(7)Si(39) show that the 6d site is fully occupied by Cd atoms, leaving only the 24k site for a random occupation (0.96Si+0.04Cd) consistent with the chemical formula Ba(8)Cd(7)Si(39). The temperature-dependent x-ray spectra for Ba(8)Zn(7)Si(39) define an Einstein mode, Θ(E,U33) = 80 K. Studies of transport properties show electrons as the majority charge carriers in the system. Although the Cd- and Zn-based samples are isoelectronic, a significantly different electronic transport points towards substantial differences in the electronic density of states in both cases.

11.
Phys Rev Lett ; 99(21): 217001, 2007 Nov 23.
Article in English | MEDLINE | ID: mdl-18233241

ABSTRACT

Combining experiments and ab initio models we report on SrPt4Ge12 and BaPt4Ge12 as members of a novel class of superconducting skutterudites, where Sr or Ba atoms stabilize a framework entirely formed by Ge atoms. Below T(c)=5.35 and 5.10 K for BaPt4Ge12 and SrPt4Ge12, respectively, electron-phonon coupled superconductivity emerges, ascribed to intrinsic features of the Pt-Ge framework, where Ge-p states dominate the electronic structure at the Fermi energy.

SELECTION OF CITATIONS
SEARCH DETAIL
...