Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38673982

ABSTRACT

The research presented in this article focuses on the use of inorganic-organic material, based on titanium dioxide and lignin, as a filler for polylactide (PLA) biocomposites. To date, no research has been conducted to understand the impact of hybrid fillers consisting of TiO2 and lignin on the supermolecular structure and crystallization abilities of polylactide. Polymer composites containing 1, 3 or 5 wt.% of hybrid filler or TiO2 were assessed in terms of their structure, morphology, and thermal properties. Mechanical properties, including tensile testing, bending, impact strength, and hardness, were discussed. The hybrid filler is characterized by a very good electrokinetic stability at pH greater than 3-4. The addition of all fillers led to a small decrease in the glass transition temperature but, most importantly, the addition of 1% of the hybrid filler to the PLA matrix increased the degree of crystallinity of the material by up to 20%. Microscopic studies revealed differences in the crystallization behavior and nucleation ability of fillers. The use of hybrid filler resulted in higher nucleation density and shorter induction time than in unfilled PLA or PLA with only TiO2. The introduction of small amounts of hybrid filler also affected the mechanical properties of the composites, causing an increase in bending strength and hardness. This information may be useful from a technological process standpoint and may also help to increase the range of applicability of biobased materials.


Subject(s)
Lignin , Polyesters , Titanium , Titanium/chemistry , Polyesters/chemistry , Lignin/chemistry , Crystallization , Tensile Strength , Materials Testing , Hardness
2.
Materials (Basel) ; 17(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38592001

ABSTRACT

This study investigates the suitability of using caffeine-treated and untreated black cherry (Prunus serotina Ehrh.) wood as a polylactide filler. Composites containing 10%, 20%, and 30% filler were investigated in terms of increasing the nucleating ability of polylactide, as well as enhancing its resistance to microorganisms. Differential scanning calorimetry studies showed that the addition of caffeine-treated wood significantly altered the crystallization behavior of the polymer matrix, increasing its crystallization temperature and degree of crystallinity. Polarized light microscopic observations revealed that only the caffeine-treated wood induced the formation of transcrystalline structures in the polylactide. Incorporation of the modified filler into the matrix was also responsible for changes in the thermal stability and decreased hydrophilicity of the material. Most importantly, the use of black cherry wood treated with caffeine imparted antifungal properties to the polylactide-based composite, effectively reducing growth of Fusarium oxysporum, Fusarium culmorum, Alternaria alternata, and Trichoderma viride. For the first time, it was reported that treatment of wood with a caffeine compound of natural origin alters the supermolecular structure, nucleating abilities, and imparts antifungal properties of polylactide/wood composites, providing promising insights into the structure-properties relationship of such composites.

3.
Int J Pharm X ; 6: 100188, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37387778

ABSTRACT

In this study, the torque profiles of heterogeneous granulation formulations with varying powder properties in terms of particle size, solubility, deformability, and wettability, were studied, and the feasibility of identifying the end-point of the granulation process for each formulation based on the torque profiles was evaluated. Dynamic median particle size (d50) and porosity were correlated to the torque measurements to understand the relationship between torque and granule properties, and to validate distinction between different granulation stages based on the torque profiles made in previous studies. Generally, the torque curves obtained from the different granulation runs in this experimental design could be categorized into two different types of torque profiles. The primary factor influencing the likelihood of producing each profile was the binder type used in the formulation. A lower viscosity, higher solubility binder resulted in a type 1 profile. Other contributing factors that affected the torque profiles include API type and impeller speed. Material properties such as the deformability and solubility of the blend formulation and the binder were identified as important factors affecting both granule growth and the type of torque profiles observed. By correlating dynamic granule properties with torque values, it was possible to determine the granulation end-point based on a pre-determined target median particle size (d50) range which corresponded to specific markers identified in the torque profiles. In type 1 torque profiles, the end-point markers corresponded to the plateau phase, whereas in type 2 torque profiles the markers were indicated by the inflection point where the slope gradient changes. Additionally, we proposed an alternative method of identification by using the first derivative of the torque values, which facilitates an easier identification of the system approaching the end-point. Overall, this study identified the effects of different variations in formulation parameters on torque profiles and granule properties and implemented an improved method of identification of granulation end-point that is not dependent on the different types of torque profiles observed.

4.
Materials (Basel) ; 16(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36614616

ABSTRACT

Currently, the fundamental activity that will allow for the development of an economy with closed circulation is the management of food waste and production waste for the preparation of biocomposites. The use of waste materials of natural origin allows for the creation of innovative composites with improved physicochemical and functional properties. The present investigation concerns the use of coffee grounds (2.5-20 wt.%) and oak sawdust (2.5-20 wt.%) as effective fillers of rigid polyurethane foam. Innovative composite materials, previously indebted in the literature, were subjected to the necessary analyses to determine the application abilities: processing times, free density, water absorption, dimensional stability, mechanical properties (compressive strength), thermal conductivity, morphology, and flame resistance. The results with respect to the mechanical tests turned out to be the key. Increasing the number of coffee additives has a positive effect on the compressive strength. The addition of this filler in the range of 5-15 wt.% increased the compressive strength of the composites, 136-139 kPa, compared to the reference sample, 127 kPa. The key parameter analysed was thermal conductivity. The results obtained were in range of the requirements, that is, 0.022-0.024 W/m·K for all used amounts of fillers 2.5-20 wt.%. This is extremely important since these materials are used for insulation purposes. The results of the burning-behaviour test have confirmed that the addition of renewable materials does not negatively affect the fire resistance of the received foams; the results were obtained analogously to those obtained from the reference sample without the addition of fillers. The height of the flame did not exceed 17 cm, while the flame decay time was 17 s for the reference sample and the composite with coffee grounds and 18 s for the composite with oak sawdust. In this work, the practical application of bioorganic waste as an innovative filler for the insulation of flooded polyurethane foam is described for the first time. The introduction of fillers of natural origin into the polymer matrix is a promising method to improve the physicochemical and functional properties of rigid polyurethane foams. Composites modified with coffee grounds and sawdust are interesting from a technological, ecological, and economic point of view, significantly increasing the range of use of foam in various industries.

5.
Materials (Basel) ; 14(21)2021 Oct 24.
Article in English | MEDLINE | ID: mdl-34771890

ABSTRACT

In this paper, native cellulose I was subjected to alkaline treatment. As a result, cellulose I was transformed to cellulose II and some nanometric particles were formed. Both polymorphic forms of cellulose were modified with poly(ethylene glycol) (PEG) and then used as fillers for polyurethane. Composites were prepared in a one-step process. Cellulosic fillers were characterized in terms of their chemical (Fourier transformation infrared spectroscopy) and supermolecular structure (X-ray diffraction), as well as their particle size. Investigation of composite polyurethane included measurements of density, characteristic processing times of foam formation, compression strength, dimensional stability, water absorption, and thermal conductivity. Much focus was put on the application aspect of the produced insulation polyurethane foams. It was shown that modification of cellulosic filler with poly(ethylene glycol) has a positive influence on formation of polyurethane composites-if modified filler was used, the values of compression strength and density increased, while water sorption and thermal conductivity decreased. Moreover, it was proven that the introduction of cellulosic fillers into the polyurethane matrix does not deteriorate the strength or thermal properties of the foams, and that composites with such fillers have good application potential.

6.
Molecules ; 25(4)2020 Feb 16.
Article in English | MEDLINE | ID: mdl-32079079

ABSTRACT

Inorganic-organic hybrids are a group of materials that have recently become the subject of intense scientific research. They exhibit some of the specific properties of both highly durable inorganic materials (e.g., titanium dioxide, zinc) and organic products with divergent physicochemical traits (e.g., lignin, chitin). This combination results in improved physicochemical, thermal or mechanical properties. Hybrids with defined characteristics can be used as fillers for polymer composites. In this study, three types of filler with different MgO/lignin ratio were used as fillers for polypropylene (PP). The effectiveness of MgO-lignin binding was confirmed using Fourier transform infrared spectroscopy. The fillers were also tested in terms of thermal stability, dispersive-morphological properties as well as porous structure. Polymer composites containing 3 wt.% of each filler were subjected to wide angle X-ray diffraction tests, differential scanning calorimetry and microscopic studies to define their structure, morphology and thermal properties. Additionally, tensile tests of the composites were performed. It was established that the composition of the filler has a significant influence on the crystallization of polypropylene-either spherulites or transcrystalline layers were formed. The value of Young's modulus and tensile strength remained unaffected by filler type. However, composites with hybrid fillers exhibited lower elongation at break than unfilled polypropylene.


Subject(s)
Lignin/chemistry , Magnesium Oxide/chemistry , Manufactured Materials/analysis , Polypropylenes/chemistry , Crystallization , Elastic Modulus , Humans , Materials Testing , Porosity , Stress, Mechanical , Tensile Strength
7.
Materials (Basel) ; 11(11)2018 Nov 13.
Article in English | MEDLINE | ID: mdl-30428517

ABSTRACT

In this paper, silica⁻lignin hybrid materials were used as fillers for a polylactide (PLA) matrix. In order to simulate biodegradation, PLA/hybrid filler composite films were kept in soil of neutral pH for six months. Differential scanning calorimetry (DSC) allowed analysis of nonisothermal crystallization behavior of composites, thermal analysis provided information about their thermal stability, and scanning electron microscopy (SEM) was applied to define morphology of films. The influence of biodegradation was also investigated in terms of changes in mechanical properties and color of samples. It was found that application of silica⁻lignin hybrids as fillers for PLA matrix may be interesting not only in terms of increasing thermal stability, but also controlled biodegradation. To the best knowledge of the authors, this is the first publication regarding biodegradation of PLA composites loaded with silica⁻lignin hybrid fillers.

SELECTION OF CITATIONS
SEARCH DETAIL
...