Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 142(44): 18814-18825, 2020 11 04.
Article in English | MEDLINE | ID: mdl-32990433

ABSTRACT

Solution-phase self-assembly of anisotropic nanoparticles into complex 2D and 3D assemblies is one of the most promising strategies toward obtaining nanoparticle-based materials and devices with unique optical properties at the macroscale. However, controlling this process with single-particle precision is highly demanding, mostly due to insufficient understanding of the self-assembly process at the nanoscale. We report the use of in situ environmental scanning transmission electron microscopy (WetSTEM), combined with UV/vis spectroscopy, small-angle X-ray diffraction (SAXRD) and multiscale modeling, to draw a detailed picture of the dynamics of vertically aligned assemblies of gold nanorods. Detailed understanding of the self-assembly/disassembly mechanisms is obtained from real-time observations, which provide direct evidence of the colloidal stability of side-to-side nanorod clusters. Structural details and the forces governing the disassembly process are revealed with single particle resolution as well as in bulk samples, by combined experimental and theoretical modeling. In particular, this study provides unique information on the evolution of the orientational order of nanorods within side-to-side 2D assemblies and shows that both electrostatic (at the nanoscale) and thermal (in bulk) stimuli can be used to drive the process. These results not only give insight into the interactions between nanorods and the stability of their assemblies, thereby assisting the design of ordered, anisotropic nanomaterials but also broaden the available toolbox for in situ tracking of nanoparticle behavior at the single-particle level.

2.
ACS Nano ; 14(10): 12918-12928, 2020 Oct 27.
Article in English | MEDLINE | ID: mdl-32886482

ABSTRACT

Mirror symmetry breaking in materials is a fascinating phenomenon that has practical implications for various optoelectronic technologies. Chiral plasmonic materials are particularly appealing due to their strong and specific interactions with light. In this work we broaden the portfolio of available strategies toward the preparation of chiral plasmonic assemblies, by applying the principles of chirality synchronization-a phenomenon known for small molecules, which results in the formation of chiral domains from transiently chiral molecules. We report the controlled cocrystallization of 23 nm gold nanoparticles and liquid crystal molecules yielding domains made of highly ordered, helical nanofibers, preferentially twisted to the right or to the left within each domain. We confirmed that such micrometer sized domains exhibit strong, far-field circular dichroism (CD) signals, even though the bulk material is racemic. We further highlight the potential of the proposed approach to realize chiral plasmonic thin films by using a mechanical chirality discrimination method. Toward this end, we developed a rapid CD imaging technique based on the use of polarized light optical microscopy (POM), which enabled probing the CD signal with micrometer-scale resolution, despite of linear dichroism and birefringence in the sample. The developed methodology allows us to extend intrinsically local effects of chiral synchronization to the macroscopic scale, thereby broadening the available tools for chirality manipulation in chiral plasmonic systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...