Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
Cell Rep ; 43(3): 113836, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38421874

ABSTRACT

Endocrine cells employ regulated exocytosis of secretory granules to secrete hormones and neurotransmitters. Secretory granule exocytosis depends on spatiotemporal variables such as proximity to the plasma membrane and age, with newly generated granules being preferentially released. Despite recent advances, we lack a comprehensive view of the molecular composition of insulin granules and associated changes over their lifetime. Here, we report a strategy for the purification of insulin secretory granules of distinct age from insulinoma INS-1 cells. Tagging the granule-resident protein phogrin with a cleavable CLIP tag, we obtain intact fractions of age-distinct granules for proteomic and lipidomic analyses. We find that the lipid composition changes over time, along with the physical properties of the membrane, and that kinesin-1 heavy chain (KIF5b) as well as Ras-related protein 3a (RAB3a) associate preferentially with younger granules. Further, we identify the Rho GTPase-activating protein (ARHGAP1) as a cytosolic factor associated with insulin granules.


Subject(s)
Insulinoma , Pancreatic Neoplasms , Humans , Insulin/metabolism , Proteomics , Lipidomics , Insulinoma/metabolism , Pancreatic Neoplasms/metabolism , Exocytosis , Secretory Vesicles/metabolism , Cytoplasmic Granules/metabolism
2.
Sci Adv ; 9(29): eadf6710, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37478183

ABSTRACT

Corticosteroids regulate vital processes, including stress responses, systemic metabolism, and blood pressure. Here, we show that corticosteroid synthesis is related to the polyunsaturated fatty acid (PUFA) content of mitochondrial phospholipids in adrenocortical cells. Inhibition of the rate-limiting enzyme of PUFA synthesis, fatty acid desaturase 2 (FADS2), leads to perturbations in the mitochondrial lipidome and diminishes steroidogenesis. Consistently, the adrenocortical mitochondria of Fads2-/- mice fed a diet with low PUFA concentration are structurally impaired and corticoid levels are decreased. On the contrary, FADS2 expression is elevated in the adrenal cortex of obese mice, and plasma corticosterone is increased, which can be counteracted by dietary supplementation with the FADS2 inhibitor SC-26192 or icosapent ethyl, an eicosapentaenoic acid ethyl ester. In humans, FADS2 expression is elevated in aldosterone-producing adenomas compared to non-active adenomas or nontumorous adrenocortical tissue and correlates with expression of steroidogenic genes. Our data demonstrate that FADS2-mediated PUFA synthesis determines adrenocortical steroidogenesis in health and disease.


Subject(s)
Adenoma , Fatty Acid Desaturases , Humans , Mice , Animals , Fatty Acid Desaturases/genetics , Lipidomics , Fatty Acids, Unsaturated/metabolism , Adrenal Glands/metabolism
3.
Hepatology ; 75(4): 881-897, 2022 04.
Article in English | MEDLINE | ID: mdl-34519101

ABSTRACT

BACKGROUND AND AIMS: NAFLD is initiated by steatosis and can progress through fibrosis and cirrhosis to HCC. The RNA binding protein human antigen R (HuR) controls RNAs at the posttranscriptional level; hepatocyte HuR has been implicated in the regulation of diet-induced hepatic steatosis. The present study aimed to understand the role of hepatocyte HuR in NAFLD development and progression to fibrosis and HCC. APPROACH AND RESULTS: Hepatocyte-specific, HuR-deficient mice and control HuR-sufficient mice were fed either a normal diet or an NAFLD-inducing diet. Hepatic lipid accumulation, inflammation, fibrosis, and HCC development were studied by histology, flow cytometry, quantitative PCR, and RNA sequencing. The liver lipidome was characterized by lipidomics analysis, and the HuR-RNA interactions in the liver were mapped by RNA immunoprecipitation sequencing. Hepatocyte-specific, HuR-deficient mice displayed spontaneous hepatic steatosis and fibrosis predisposition compared to control HuR-sufficient mice. On an NAFLD-inducing diet, hepatocyte-specific HuR deficiency resulted in exacerbated inflammation, fibrosis, and HCC-like tumor development. A multi-omic approach, including lipidomics, transcriptomics, and RNA immunoprecipitation sequencing revealed that HuR orchestrates a protective network of hepatic-metabolic and lipid homeostasis-maintaining pathways. Consistently, HuR-deficient livers accumulated, already at steady state, a triglyceride signature resembling that of NAFLD livers. Moreover, up-regulation of secreted phosphoprotein 1 expression mediated, at least partially, fibrosis development in hepatocyte-specific HuR deficiency on an NAFLD-inducing diet, as shown by experiments using antibody blockade of osteopontin. CONCLUSIONS: HuR is a gatekeeper of liver homeostasis, preventing NAFLD-related fibrosis and HCC, suggesting that the HuR-dependent network could be exploited therapeutically.


Subject(s)
Carcinoma, Hepatocellular , ELAV-Like Protein 1 , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Animals , Carcinoma, Hepatocellular/pathology , ELAV-Like Protein 1/metabolism , Homeostasis , Inflammation/metabolism , Liver/pathology , Liver Cirrhosis/metabolism , Liver Neoplasms/pathology , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/pathology , RNA , Triglycerides/metabolism
5.
Nature ; 590(7845): 326-331, 2021 02.
Article in English | MEDLINE | ID: mdl-33505018

ABSTRACT

Resistance to insulin and insulin-like growth factor 1 (IGF1) in pancreatic ß-cells causes overt diabetes in mice; thus, therapies that sensitize ß-cells to insulin may protect patients with diabetes against ß-cell failure1-3. Here we identify an inhibitor of insulin receptor (INSR) and IGF1 receptor (IGF1R) signalling in mouse ß-cells, which we name the insulin inhibitory receptor (inceptor; encoded by the gene Iir). Inceptor contains an extracellular cysteine-rich domain with similarities to INSR and IGF1R4, and a mannose 6-phosphate receptor domain that is also found in the IGF2 receptor (IGF2R)5. Knockout mice that lack inceptor (Iir-/-) exhibit signs of hyperinsulinaemia and hypoglycaemia, and die within a few hours of birth. Molecular and cellular analyses of embryonic and postnatal pancreases from Iir-/- mice showed an increase in the activation of INSR-IGF1R in Iir-/- pancreatic tissue, resulting in an increase in the proliferation and mass of ß-cells. Similarly, inducible ß-cell-specific Iir-/- knockout in adult mice and in ex vivo islets led to an increase in the activation of INSR-IGF1R and increased proliferation of ß-cells, resulting in improved glucose tolerance in vivo. Mechanistically, inceptor interacts with INSR-IGF1R to facilitate clathrin-mediated endocytosis for receptor desensitization. Blocking this physical interaction using monoclonal antibodies against the extracellular domain of inceptor resulted in the retention of inceptor and INSR at the plasma membrane to sustain the activation of INSR-IGF1R in ß-cells. Together, our findings show that inceptor shields insulin-producing ß-cells from constitutive pathway activation, and identify inceptor as a potential molecular target for INSR-IGF1R sensitization and diabetes therapy.


Subject(s)
Blood Glucose/metabolism , Insulin Antagonists/metabolism , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Neoplasm Proteins/metabolism , Signal Transduction , Animals , Blood Glucose/analysis , Cell Line , Cell Proliferation/drug effects , Cell Size , Clathrin/metabolism , Endocrine Cells/metabolism , Endocytosis , Endoplasmic Reticulum/metabolism , Glucose Tolerance Test , Golgi Apparatus/metabolism , Humans , Insulin-Like Growth Factor I/metabolism , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/drug effects , Lysosomes/metabolism , Male , Membrane Proteins , Mice , Neoplasm Proteins/chemistry , Receptor, Insulin/metabolism , Signal Transduction/drug effects , Tamoxifen/pharmacology
6.
Front Cell Dev Biol ; 7: 206, 2019.
Article in English | MEDLINE | ID: mdl-31649929

ABSTRACT

A calorie-rich diet is one reason for the continuous spread of metabolic syndromes in western societies. Smart food design is one powerful tool to prevent metabolic stress, and the search for suitable bioactive additives is a continuous task. The nutrient-sensing insulin pathway is an evolutionary conserved mechanism that plays an important role in metabolism, growth and development. Recently, lipid cues capable to stimulate insulin signaling were identified. However, the mechanistic base of their activity remains obscure to date. We show that specific Akt/Protein-kinase B isoforms are responsive to different calorie-rich diets, and potentiate the activity of the cellular insulin cascade. Our data add a new dimension to existing models and position Drosophila as a powerful tool to study the relation between dietary lipid cues and the insulin-induced cellular signal pathway.

7.
Mol Metab ; 26: 30-44, 2019 08.
Article in English | MEDLINE | ID: mdl-31221621

ABSTRACT

OBJECTIVE: The liver regulates the availability of insulin to other tissues and is the first line insulin response organ physiologically exposed to higher insulin concentrations than the periphery. Basal insulin during fasting inhibits hepatic gluconeogenesis and glycogenolysis, whereas postprandial insulin peaks stimulate glycogen synthesis. The molecular consequences of chronic insulin deficiency for the liver have not been studied systematically. METHODS: We analyzed liver samples of a genetically diabetic pig model (MIDY) and of wild-type (WT) littermate controls by RNA sequencing, proteomics, and targeted metabolomics/lipidomics. RESULTS: Cross-omics analyses revealed increased activities in amino acid metabolism, oxidation of fatty acids, ketogenesis, and gluconeogenesis in the MIDY samples. In particular, the concentrations of the ketogenic enzyme 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2) and of retinol dehydrogenase 16 (RDH16), which catalyzes the first step in retinoic acid biogenesis, were highly increased. Accordingly, elevated levels of retinoic acid, which stimulates the expression of the gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PCK1), were measured in the MIDY samples. In contrast, pathways related to extracellular matrix and inflammation/pathogen defense response were less active than in the WT samples. CONCLUSIONS: The first multi-omics study of a clinically relevant diabetic large animal model revealed molecular signatures and key drivers of functional alterations of the liver in insulin-deficient diabetes mellitus. The multi-omics data set provides a valuable resource for comparative analyses with other experimental or clinical data sets.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Insulin/metabolism , Liver/metabolism , Animals , Diabetes Mellitus, Experimental/genetics , Disease Models, Animal , Female , Insulin/deficiency , Metabolomics , Swine
8.
Mol Metab ; 22: 12-20, 2019 04.
Article in English | MEDLINE | ID: mdl-30777728

ABSTRACT

OBJECTIVE: Shotgun lipidomics enables an extensive analysis of lipids from tissues and fluids. Each specimen requires appropriate extraction and processing procedures to ensure good coverage and reproducible quantification of the lipidome. Adipose tissue (AT) has become a research focus with regard to its involvement in obesity-related pathologies. However, the quantification of the AT lipidome is particularly challenging due to the predominance of triacylglycerides, which elicit high ion suppression of the remaining lipid classes. METHODS: We present a new and validated method for shotgun lipidomics of AT, which tailors the lipid extraction procedure to the target specimen and features high reproducibility with a linear dynamic range of at least 4 orders of magnitude for all lipid classes. RESULTS: Utilizing this method, we observed tissue-specific and diet-related differences in three AT types (brown, gonadal, inguinal subcutaneous) from lean and obese mice. Brown AT exhibited a distinct lipidomic profile with the greatest lipid class diversity and responded to high-fat diet by altering its lipid composition, which shifted towards that of white AT. Moreover, diet-induced obesity promoted an overall remodeling of the lipidome, where all three AT types featured a significant increase in longer and more unsaturated triacylglyceride and phospholipid species. CONCLUSIONS: The here presented method facilitates reproducible systematic lipidomic profiling of AT and could be integrated with further -omics approaches used in (pre-) clinical research, in order to advance the understanding of the molecular metabolic dynamics involved in the pathogenesis of obesity-associated disorders.


Subject(s)
Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Lipidomics , Lipids , Animals , Female , Mice , Mice, Inbred C57BL
9.
Nat Immunol ; 20(1): 40-49, 2019 01.
Article in English | MEDLINE | ID: mdl-30455459

ABSTRACT

Resolution of inflammation is essential for tissue homeostasis and represents a promising approach to inflammatory disorders. Here we found that developmental endothelial locus-1 (DEL-1), a secreted protein that inhibits leukocyte-endothelial adhesion and inflammation initiation, also functions as a non-redundant downstream effector in inflammation clearance. In human and mouse periodontitis, waning of inflammation was correlated with DEL-1 upregulation, whereas resolution of experimental periodontitis failed in DEL-1 deficiency. This concept was mechanistically substantiated in acute monosodium-urate-crystal-induced inflammation, where the pro-resolution function of DEL-1 was attributed to effective apoptotic neutrophil clearance (efferocytosis). DEL-1-mediated efferocytosis induced liver X receptor-dependent macrophage reprogramming to a pro-resolving phenotype and was required for optimal production of at least certain specific pro-resolving mediators. Experiments in transgenic mice with cell-specific overexpression of DEL-1 linked its anti-leukocyte-recruitment action to endothelial cell-derived DEL-1 and its efferocytic/pro-resolving action to macrophage-derived DEL-1. Thus, the compartmentalized expression of DEL-1 facilitates distinct homeostatic functions in an appropriate context that can be harnessed therapeutically.


Subject(s)
Carrier Proteins/metabolism , Inflammation/immunology , Macrophages/physiology , Neutrophils/immunology , Periodontitis/immunology , Adult , Animals , Calcium-Binding Proteins , Carrier Proteins/genetics , Cell Adhesion Molecules , Cellular Reprogramming , Cytokines/metabolism , Gene Expression Regulation , Humans , Inflammation/chemically induced , Intercellular Signaling Peptides and Proteins , K562 Cells , Liver X Receptors/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Phagocytosis
11.
Dev Cell ; 46(6): 781-793.e4, 2018 09 24.
Article in English | MEDLINE | ID: mdl-30253170

ABSTRACT

How cold-blooded animals acclimate to temperature and what determines the limits of their viable temperature range are not understood. Here, we show that Drosophila alter their dietary preference from yeast to plants when temperatures drop below 15°C and that the different lipids present in plants improve survival at low temperatures. We show that Drosophila require dietary unsaturated fatty acids present in plants to adjust membrane fluidity and maintain motor coordination. Feeding on plants extends lifespan and survival for many months at temperatures consistent with overwintering in temperate climates. Thus, physiological alterations caused by a temperature-dependent dietary shift could help Drosophila survive seasonal temperature changes.


Subject(s)
Adaptation, Physiological , Cold Temperature , Drosophila melanogaster/growth & development , Drosophila melanogaster/physiology , Fatty Acids, Unsaturated/metabolism , Feeding Behavior , Membrane Lipids/metabolism , Animals , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/physiology , Female , Membrane Fluidity
12.
J Cell Biol ; 217(5): 1643-1649, 2018 05 07.
Article in English | MEDLINE | ID: mdl-29453311

ABSTRACT

Insulin receptor (IR) signaling plays a critical role in the regulation of metabolism and growth in multicellular organisms. IRs are unique among receptor tyrosine kinases in that they exist exclusively as covalent (αß)2 homodimers at the cell surface. Transmembrane signaling by the IR can therefore not be based on ligand-induced dimerization as such but must involve structural changes within the existing receptor dimer. In this study, using glycosylated full-length human IR reconstituted into lipid nanodiscs, we show by single-particle electron microscopy that insulin binding to the dimeric receptor converts its ectodomain from an inverted U-shaped conformation to a T-shaped conformation. This structural rearrangement of the ectodomain propagates to the transmembrane domains, which are well separated in the inactive conformation but come close together upon insulin binding, facilitating autophosphorylation of the cytoplasmic kinase domains.


Subject(s)
Antigens, CD/metabolism , Cell Membrane/metabolism , Receptor, Insulin/metabolism , Signal Transduction , Antigens, CD/chemistry , Antigens, CD/ultrastructure , Humans , Insulin/metabolism , Ligands , Protein Binding , Protein Domains , Receptor, Insulin/chemistry , Receptor, Insulin/ultrastructure
14.
Elife ; 72018 01 13.
Article in English | MEDLINE | ID: mdl-29331015

ABSTRACT

Blood is arguably the most important bodily fluid and its analysis provides crucial health status information. A first routine measure to narrow down diagnosis in clinical practice is the differential blood count, determining the frequency of all major blood cells. What is lacking to advance initial blood diagnostics is an unbiased and quick functional assessment of blood that can narrow down the diagnosis and generate specific hypotheses. To address this need, we introduce the continuous, cell-by-cell morpho-rheological (MORE) analysis of diluted whole blood, without labeling, enrichment or separation, at rates of 1000 cells/sec. In a drop of blood we can identify all major blood cells and characterize their pathological changes in several disease conditions in vitro and in patient samples. This approach takes previous results of mechanical studies on specifically isolated blood cells to the level of application directly in blood and adds a functional dimension to conventional blood analysis.


Subject(s)
Blood Cells/cytology , Blood Cells/physiology , Cytological Techniques/methods , Diagnostic Tests, Routine/methods , Single-Cell Analysis/methods , Humans
15.
Cell ; 172(1-2): 147-161.e12, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29328910

ABSTRACT

Trained innate immunity fosters a sustained favorable response of myeloid cells to a secondary challenge, despite their short lifespan in circulation. We thus hypothesized that trained immunity acts via modulation of hematopoietic stem and progenitor cells (HSPCs). Administration of ß-glucan (prototypical trained-immunity-inducing agonist) to mice induced expansion of progenitors of the myeloid lineage, which was associated with elevated signaling by innate immune mediators, such as IL-1ß and granulocyte-macrophage colony-stimulating factor (GM-CSF), and with adaptations in glucose metabolism and cholesterol biosynthesis. The trained-immunity-related increase in myelopoiesis resulted in a beneficial response to secondary LPS challenge and protection from chemotherapy-induced myelosuppression in mice. Therefore, modulation of myeloid progenitors in the bone marrow is an integral component of trained immunity, which to date, was considered to involve functional changes of mature myeloid cells in the periphery.


Subject(s)
Immunity, Innate , Immunologic Memory , Myeloid Progenitor Cells/immunology , Animals , Cells, Cultured , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Interleukin-1beta/metabolism , Male , Mice , Mice, Inbred C57BL , Myeloid Progenitor Cells/drug effects , Myelopoiesis/immunology , beta-Glucans/pharmacology
16.
Mol Metab ; 6(8): 931-940, 2017 08.
Article in English | MEDLINE | ID: mdl-28752056

ABSTRACT

OBJECTIVE: The prevalence of diabetes mellitus and associated complications is steadily increasing. As a resource for studying systemic consequences of chronic insulin insufficiency and hyperglycemia, we established a comprehensive biobank of long-term diabetic INSC94Y transgenic pigs, a model of mutant INS gene-induced diabetes of youth (MIDY), and of wild-type (WT) littermates. METHODS: Female MIDY pigs (n = 4) were maintained with suboptimal insulin treatment for 2 years, together with female WT littermates (n = 5). Plasma insulin, C-peptide and glucagon levels were regularly determined using specific immunoassays. In addition, clinical chemical, targeted metabolomics, and lipidomics analyses were performed. At age 2 years, all pigs were euthanized, necropsied, and a broad spectrum of tissues was taken by systematic uniform random sampling procedures. Total beta cell volume was determined by stereological methods. A pilot proteome analysis of pancreas, liver, and kidney cortex was performed by label free proteomics. RESULTS: MIDY pigs had elevated fasting plasma glucose and fructosamine concentrations, C-peptide levels that decreased with age and were undetectable at 2 years, and an 82% reduced total beta cell volume compared to WT. Plasma glucagon and beta hydroxybutyrate levels of MIDY pigs were chronically elevated, reflecting hallmarks of poorly controlled diabetes in humans. In total, ∼1900 samples of different body fluids (blood, serum, plasma, urine, cerebrospinal fluid, and synovial fluid) as well as ∼17,000 samples from ∼50 different tissues and organs were preserved to facilitate a plethora of morphological and molecular analyses. Principal component analyses of plasma targeted metabolomics and lipidomics data and of proteome profiles from pancreas, liver, and kidney cortex clearly separated MIDY and WT samples. CONCLUSIONS: The broad spectrum of well-defined biosamples in the Munich MIDY Pig Biobank that will be available to the scientific community provides a unique resource for systematic studies of organ crosstalk in diabetes in a multi-organ, multi-omics dimension.


Subject(s)
Body Fluids , Diabetes Mellitus, Type 2/genetics , Disease Models, Animal , Insulin/genetics , Swine/genetics , Tissue Banks , Animals , Diabetes Mellitus, Type 2/pathology , Diabetes Mellitus, Type 2/veterinary , Female , Germany
17.
Front Physiol ; 8: 252, 2017.
Article in English | MEDLINE | ID: mdl-28536532

ABSTRACT

Driven by interactions between lipids and proteins, biological membranes display lateral heterogeneity that manifests itself in a mosaic of liquid-ordered (Lo) or raft, and liquid-disordered (Ld) or non-raft domains with a wide range of different properties and compositions. In giant plasma membrane vesicles and giant unilamellar vesicles, specific binding of Cholera Toxin (CTxB) to GM1 glycolipids is a commonly used strategy to label raft domains or Lo membrane environments. However, these studies often use acyl-chain labeled bodipy-GM1 (bdGM1), whose headgroup accessibility and membrane order or phase partitioning may differ from those of GM1, rendering the interpretation of CTxB binding data quite problematic. To unravel the molecular basis of CTxB binding to GM1 and bdGM1, we explored the partitioning and the headgroup presentation of these gangliosides in the Lo and Ld phases using atomistic molecular dynamics simulations complemented by CTxB binding experiments. The conformation of both GM1 and bdGM1 was shown to be largely similar in the Lo and Ld phases. However, bdGM1 showed reduction in receptor availability when reconstituted into synthetic bilayer mixtures, highlighting that membrane phase partitioning of the gangliosides plays a considerable role in CTxB binding. Our results suggest that the CTxB binding is predominately modulated by the partitioning of the receptor to an appropriate membrane phase. Further, given that the Lo and Ld partitioning of bdGM1 differs from those of GM1, usage of bdGM1 for studying GM1 behavior in cells can lead to invalid interpretation of experimental data.

18.
PLoS One ; 12(2): e0168781, 2017.
Article in English | MEDLINE | ID: mdl-28207743

ABSTRACT

The pathogenesis and progression of many tumors, including hematologic malignancies is highly dependent on enhanced lipogenesis. De novo fatty-acid synthesis permits accelerated proliferation of tumor cells by providing membrane components but these may also alter physicochemical properties of lipid bilayers, which can impact signaling or even increase drug resistance in cancer cells. Cancer type-specific lipid profiles would permit us to monitor and interpret actual effects of lipid changes, potential fingerprints of individual tumors to be explored as diagnostic markers. We have used the shotgun MS approach to identify lipid patterns in different types of acute myeloid leukemia (AML) patients that either show no karyotype change or belong to t(8;21) or inv16 types. Differences in lipidomes of t(8;21) and inv(16) patients, as compared to AML patients without karyotype change, presented mostly as substantial modulation of ceramide/sphingolipid synthesis. Furthermore, between the t(8;21) and all other patients we observed significant changes in physicochemical membrane properties. These were related to a marked alteration in lipid saturation levels. The discovered differences in lipid profiles of various AML types improve our understanding of the pathobiochemical pathways involved and may serve in the development of diagnostic tools.


Subject(s)
Biomarkers, Tumor/metabolism , Leukemia, Myeloid, Acute/classification , Leukemia, Myeloid, Acute/metabolism , Lipids/analysis , Adult , Aged , Aged, 80 and over , Female , Follow-Up Studies , Humans , Leukemia, Myeloid, Acute/diagnosis , Male , Middle Aged , Prognosis
19.
ACS Nano ; 9(10): 9783-91, 2015 Oct 27.
Article in English | MEDLINE | ID: mdl-26331529

ABSTRACT

We present an ultrasensitive technique for quantitative protein-protein interaction analysis in a two-dimensional format based on phase-separated, micropatterned membranes. Interactions between proteins captured to lipid probes via an affinity tag trigger partitioning into the liquid-ordered phase, which is readily quantified by fluorescence imaging. Based on a calibration with well-defined low-affinity protein-protein interactions, equilibrium dissociation constants >1 mM were quantified. Direct capturing of proteins from mammalian cell lysates enabled us to detect homo- and heterodimerization of signal transducer and activator of transcription proteins. Using the epidermal growth factor receptor (EGFR) as a model system, quantification of low-affinity interactions between different receptor domains contributing to EGFR dimerization was achieved. By exploitation of specific features of the membrane-based assay, the regulation of EGFR dimerization by lipids was demonstrated.


Subject(s)
ErbB Receptors/metabolism , Lipids/chemistry , Membranes, Artificial , Optical Imaging/instrumentation , Protein Interaction Mapping/instrumentation , Animals , Equipment Design , ErbB Receptors/analysis , Humans , Microscopy, Fluorescence/instrumentation , Microscopy, Fluorescence/methods , Models, Molecular , Optical Imaging/methods , Phase Transition , Protein Interaction Mapping/methods , Protein Interaction Maps , Protein Multimerization , Signal Transduction
20.
Cell Host Microbe ; 18(1): 75-85, 2015 Jul 08.
Article in English | MEDLINE | ID: mdl-26159720

ABSTRACT

During cell entry, non-enveloped viruses undergo partial uncoating to expose membrane lytic proteins for gaining access to the cytoplasm. We report that adenovirus uses membrane piercing to induce and hijack cellular wound removal processes that facilitate further membrane disruption and infection. Incoming adenovirus stimulates calcium influx and lysosomal exocytosis, a membrane repair mechanism resulting in release of acid sphingomyelinase (ASMase) and degradation of sphingomyelin to ceramide lipids in the plasma membrane. Lysosomal exocytosis is triggered by small plasma membrane lesions induced by the viral membrane lytic protein-VI, which is exposed upon mechanical cues from virus receptors, followed by virus endocytosis into leaky endosomes. Chemical inhibition or RNA interference of ASMase slows virus endocytosis, inhibits virus escape to the cytosol, and reduces infection. Ceramide enhances binding of protein-VI to lipid membranes and protein-VI-induced membrane rupture. Thus, adenovirus uses a positive feedback loop between virus uncoating and lipid signaling for efficient membrane penetration.


Subject(s)
Adenoviridae/physiology , Capsid Proteins/metabolism , Cell Membrane/physiology , Host-Pathogen Interactions , Virus Internalization , Adenoviridae/enzymology , Biotransformation , Cell Membrane/metabolism , Ceramides/metabolism , Endocytosis , Exocytosis , HeLa Cells , Humans , Lysosomes/metabolism , Sphingomyelin Phosphodiesterase/metabolism , Sphingomyelins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...