Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Int J Clin Pharmacol Ther ; 55(11): 881-890, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28933336

ABSTRACT

OBJECTIVE: To evaluate and to compare the bioavailability, the influence of food intake on the bioavailability, and the safety and tolerability of a newly-developed oxycodone once-daily (OOD) prolonged-release tablet with an established oxycodone twice-daily (OTD) prolonged-release tablet after single-dose administration under fasting or fed conditions as well as after multiple-dose administration. MATERIALS AND METHODS: Three single-center, open-label, randomized, balanced, two-treatment, two-period, two-sequence crossover studies were conducted. In each study, 36 healthy volunteers were randomized to receive 10 mg oxycodone daily as OOD (oxycodone HCL 10-mg PR tablets XL (Develco Pharma Schweiz AG, Pratteln, Switzerland); administration of 1 tablet in the morning) or as OTD (reference formulation: oxygesic 5-mg tablets (Mundipharma GmbH, Limburg an der Lahn, Germany); administration of 1 tablet in the morning and 1 tablet in the evening). Tablets were administered once daily or twice daily under fasting conditions (study 1) or under fed conditions (study 2) as well as after multiple-dose administration (study 3). A sufficient number of blood samples were taken for describing plasma profiles and for calculation of pharmacokinetic parameters. Plasma concentrations of oxycodone were determined by LC-MS/MS. Safety and tolerability were monitored and assessed in all three studies. RESULTS: Plasma profiles of OOD reveal sustained concentrations of oxycodone over the complete dosing interval of 24 hours. In comparison to the OTD reference formulation, the OOD test formulation showed a slightly slower increase of concentrations within the absorption phase and similar plasma concentrations at the maximum and at the end of the dosing interval (24 hours). Extent of bioavailability (AUC), maximum plasma concentrations (Cmax), and plasma concentrations at the end of the dosing interval (Cτ,ss,24h) of OOD could be classified as comparable to OTD considering 90% confidence intervals (CIs) and acceptance limits of 80.00 - 125.00%. Bioavailability of OOD was not influenced by concomitant food intake. OOD and OTD were generally well tolerated, a difference between the two products could not be observed. CONCLUSION: The new 10-mg OOD formulation provides sustained oxycodone plasma concentrations over the dosing interval of 24 hours and is suitable for once-daily administration. Bioavailability of OOD could be classified as comparable to the twice-daily administration of the OTD reference formulation. The new formulation widens and optimizes the range of strong opioid drug products in patient-centered therapy of chronic pain with simplified dosing and better compliance.
.


Subject(s)
Analgesics, Opioid/administration & dosage , Chromatography, Liquid/methods , Oxycodone/administration & dosage , Tandem Mass Spectrometry/methods , Adolescent , Adult , Analgesics, Opioid/adverse effects , Analgesics, Opioid/pharmacokinetics , Area Under Curve , Biological Availability , Chemistry, Pharmaceutical , Cross-Over Studies , Delayed-Action Preparations , Drug Administration Schedule , Female , Food-Drug Interactions , Humans , Male , Middle Aged , Oxycodone/adverse effects , Oxycodone/pharmacokinetics , Tablets , Therapeutic Equivalency , Young Adult
2.
Geriatr Gerontol Int ; 17(11): 2274-2282, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28176431

ABSTRACT

AIM: Falls are a leading cause of disability in older people. Here we investigate if daily-life gait assessments are better than clinical gait assessments at discriminating between older people with and without a history of falls. METHODS: A total of 96 independent-living participants (age 75.5 ± 7.8) underwent sensorimotor, psychological and cognitive assessments, and the Timed Up and Go and 10-m walk tests. Participants wore a small pendant sensor device for a week in their home environment, from which the new remote assessments of daily-life gait were determined. RESULTS: During daily-life, fallers had significantly lower gait quality (lower gait endurance, higher within-walk variability and lower between-walk adaptability), but not reduced gait quantity (total steps) or gait intensity (mean cadence). In the clinic, fallers had slower Timed Up and Go, but not 10-m walk test times. After adjusting for demographics, only the daily-life assessments of gait endurance and within-walk variability remained significant. Reduced daily-life gait assessments were significantly correlated with older age, higher body mass index, multiple medications, disability, more concern about falling, poor executive function and higher physiological fall risk. CONCLUSIONS: The new daily-life gait assessments were better than the clinical gait assessments at identifying fall risk in our sample of independent living older people. However, further research is required to validate these findings in other populations or those living in residential aged care. Daily-life gait was not only associated with demographics and physiological capacity, but also general health, executive function and the ability to undertake a variety of activities of daily living without excessive concern about falling. Geriatr Gerontol Int 2017; 17: 2274-2282.


Subject(s)
Accidental Falls , Gait , Geriatric Assessment/methods , Activities of Daily Living , Aged , Aged, 80 and over , Humans , Risk
3.
Aging Clin Exp Res ; 29(4): 609-619, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28181206

ABSTRACT

BACKGROUND: In patients with mild cognitive impairment (MCI), gait instability, particularly in dual-task situations, has been associated with impaired executive function and an increased fall risk. Ginkgo biloba extract (GBE) could be an effective mean to improve gait stability. AIMS: This study investigated the effect of GBE on spatio-temporal gait parameters of MCI patients while walking under single and dual-task conditions. METHODS: Fifty patients aged 50-85 years with MCI and associated dual-task-related gait impairment participated in this randomised, double-blind, placebo-controlled, exploratory phase IV drug trial. Intervention group (IG) patients received GBE (Symfona® forte 120 mg) twice-daily for 6 months while control group (CG) patients received placebo capsules. A 6-month open-label phase with identical GBE dosage followed. Gait was quantified at months 0, 3, 6 and 12. RESULTS: After 6 months, dual-task-related cadence increased in the IG compared to the CG (p = 0.019, d = 0.71). No significant changes, but GBE-associated numerical non-significant trends were found after 6-month treatment for dual-task-related gait velocity and stride time variability. DISCUSSION: Findings suggest that 120 mg of GBE twice-daily for at least 6 months may improve dual-task-related gait performance in patients with MCI. CONCLUSIONS: The observed gait improvements add to the understanding of the self-reported unspecified improvements among MCI patients when treated with standardised GBE.


Subject(s)
Cognitive Dysfunction/drug therapy , Gait/drug effects , Ginkgo biloba/chemistry , Plant Extracts/administration & dosage , Aged , Aged, 80 and over , Double-Blind Method , Female , Humans , Male , Middle Aged
4.
J Gerontol A Biol Sci Med Sci ; 72(6): 832-837, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-27591431

ABSTRACT

BACKGROUND: Reaction time measures have considerable potential to aid neuropsychological assessment in a variety of health care settings. One such measure, the intraindividual reaction time variability (IIV), is of particular interest as it is thought to reflect neurobiological disturbance. IIV is associated with a variety of age-related neurological disorders, as well as gait impairment and future falls in older adults. However, although persons diagnosed with Mild Cognitive Impairment (MCI) are at high risk of falling, the association between IIV and prospective falls is unknown. METHODS: We conducted a longitudinal cohort study in cognitively intact (n = 271) and MCI (n = 154) community-dwelling adults aged 70-90 years. IIV was assessed through a variety of measures including simple and choice hand reaction time and choice stepping reaction time tasks (CSRT), the latter administered as a single task and also with a secondary working memory task. RESULTS: Logistic regression did not show an association between IIV on the hand-held tasks and falls. Greater IIV in both CSRT tasks, however, did significantly increase the risk of future falls. This effect was specific to the MCI group, with a stronger effect in persons exhibiting gait, posture, or physiological impairment. CONCLUSIONS: The findings suggest that increased stepping IIV may indicate compromised neural circuitry involved in executive function, gait, and posture in persons with MCI increasing their risk of falling. IIV measures have potential to assess neurobiological disturbance underlying physical and cognitive dysfunction in old age, and aid fall risk assessment and routine care in community and health care settings.


Subject(s)
Accidental Falls , Cognitive Dysfunction/physiopathology , Gait/physiology , Reaction Time/physiology , Accidental Falls/statistics & numerical data , Aged , Aged, 80 and over , Cohort Studies , Female , Humans , Logistic Models , Longitudinal Studies , Male , Posture/physiology , Risk Assessment
5.
Article in English | MEDLINE | ID: mdl-27293489

ABSTRACT

BACKGROUND: Falls are common in older adults and can result in serious injuries. Due to demographic changes, falls and related healthcare costs are likely to increase over the next years. Participation and motivation of older adults in fall prevention measures remain a challenge. The iStoppFalls project developed an information and communication technology (ICT)-based system for older adults to use at home in order to reduce common fall risk factors such as impaired balance and muscle weakness. The system aims at increasing older adults' motivation to participate in ICT-based fall prevention measures. This article reports on usability, user-experience and user-acceptance aspects affecting the use of the iStoppFalls system by older adults. METHODS: In the course of a 16-week international multicenter study, 153 community-dwelling older adults aged 65+ participated in the iStoppFalls randomized controlled trial, of which half used the system in their home to exercise and assess their risk of falling. During the study, 60 participants completed questionnaires regarding the usability, user experience and user acceptance of the iStoppFalls system. Usability was measured with the System Usability Scale (SUS). For user experience the Physical Activity Enjoyment Scale (PACES) was applied. User acceptance was assessed with the Dynamic Acceptance Model for the Re-evaluation of Technologies (DART). To collect more detailed data on usability, user experience and user acceptance, additional qualitative interviews and observations were conducted with participants. RESULTS: Participants evaluated the usability of the system with an overall score of 62 (Standard Deviation, SD 15.58) out of 100, which suggests good usability. Most users enjoyed the iStoppFalls games and assessments, as shown by the overall PACES score of 31 (SD 8.03). With a score of 0.87 (SD 0.26), user acceptance results showed that participants accepted the iStoppFalls system for use in their own home. Interview data suggested that certain factors such as motivation, complexity or graphical design were different for gender and age. CONCLUSIONS: The results suggest that the iStoppFalls system has good usability, user experience and user acceptance. It will be important to take these along with factors such as motivation, gender and age into consideration when designing and further developing ICT-based fall prevention systems.

6.
Article in English | MEDLINE | ID: mdl-26865881

ABSTRACT

BACKGROUND: Quick protective reactions such as reaching or stepping are important to avoid a fall or minimize injuries. We developed Kinect-based choice reaching and stepping reaction time tests (Kinect-based CRTs) and evaluated their ability to differentiate between older fallers and non-fallers and the feasibility of administering them at home. METHODS: A total of 94 community-dwelling older people were assessed on the Kinect-based CRTs in the laboratory and were followed-up for falls for 6 months. Additionally, a subgroup (n = 20) conducted the Kinect-based CRTs at home. Signal processing algorithms were developed to extract features for reaction, movement and the total time from the Kinect skeleton data. RESULTS: Nineteen participants (20.2 %) reported a fall in the 6 months following the assessment. The reaction time (fallers: 797 ± 136 ms, non-fallers: 714 ± 89 ms), movement time (fallers: 392 ± 50 ms, non-fallers: 358 ± 51 ms) and total time (fallers: 1189 ± 170 ms, non-fallers: 1072 ± 109 ms) of the reaching reaction time test differentiated well between the fallers and non-fallers. The stepping reaction time test did not significantly discriminate between the two groups in the prospective study. The correlations between the laboratory and in-home assessments were 0.689 for the reaching reaction time and 0.860 for stepping reaction time. CONCLUSION: The study findings indicate that the Kinect-based CRT tests are feasible to administer in clinical and in-home settings, and thus represents an important step towards the development of sensor-based fall risk self-assessments. With further validation, the assessments may prove useful as a fall risk screen and home-based assessment measures for monitoring changes over time and effects of fall prevention interventions.

7.
Med Biol Eng Comput ; 54(4): 663-74, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26245255

ABSTRACT

Morbidity and falls are problematic for older people. Wearable devices are increasingly used to monitor daily activities. However, sensors often require rigid attachment to specific locations and shuffling or quiet standing may be confused with walking. Furthermore, it is unclear whether clinical gait assessments are correlated with how older people usually walk during daily life. Wavelet transformations of accelerometer and barometer data from a pendant device worn inside or outside clothing were used to identify walking (excluding shuffling or standing) by 51 older people (83 ± 4 years) during 25 min of 'free-living' activities. Accuracy was validated against annotated video. Training and testing were separated. Activities were only loosely structured including noisy data preceding pendant wearing. An electronic walkway was used for laboratory comparisons. Walking was classified (accuracy ≥97 %) with low false-positive errors (≤1.9%, κ ≥ 0.90). Median free-living cadence was lower than laboratory-assessed cadence (101 vs. 110 steps/min, p < 0.001) but correlated (r = 0.69). Free-living step time variability was significantly higher and uncorrelated with laboratory-assessed variability unless detrended. Remote gait impairment monitoring using wearable devices is feasible providing new ways to investigate morbidity and falls risk. Laboratory-assessed gait performances are correlated with free-living walks, but likely reflect the individual's 'best' performance.


Subject(s)
Activities of Daily Living , Gait/physiology , Monitoring, Ambulatory/instrumentation , Wavelet Analysis , Acceleration , Aged , Aged, 80 and over , Algorithms , Decision Trees , Female , Humans , Male
8.
Gerontology ; 62(3): 275-88, 2016.
Article in English | MEDLINE | ID: mdl-26645282

ABSTRACT

BACKGROUND: Losses in lower extremity muscle strength/power, muscle mass and deficits in static and particularly dynamic balance due to aging are associated with impaired functional performance and an increased fall risk. It has been shown that the combination of balance and strength training (BST) mitigates these age-related deficits. However, it is unresolved whether supervised versus unsupervised BST is equally effective in improving muscle power and balance in older adults. OBJECTIVE: This study examined the impact of a 12-week BST program followed by 12 weeks of detraining on measures of balance and muscle power in healthy older adults enrolled in supervised (SUP) or unsupervised (UNSUP) training. METHODS: Sixty-six older adults (men: 25, women: 41; age 73 ± 4 years) were randomly assigned to a SUP group (2/week supervised training, 1/week unsupervised training; n = 22), an UNSUP group (3/week unsupervised training; n = 22) or a passive control group (CON; n = 22). Static (i.e., Romberg Test) and dynamic (i.e., 10-meter walk test) steady-state, proactive (i.e., Timed Up and Go Test, Functional Reach Test), and reactive balance (e.g., Push and Release Test), as well as lower extremity muscle power (i.e., Chair Stand Test; Stair Ascent and Descent Test) were tested before and after the active training phase as well as after detraining. RESULTS: Adherence rates to training were 92% for SUP and 97% for UNSUP. BST resulted in significant group × time interactions. Post hoc analyses showed, among others, significant training-related improvements for the Romberg Test, stride velocity, Timed Up and Go Test, and Chair Stand Test in favor of the SUP group. Following detraining, significantly enhanced performances (compared to baseline) were still present in 13 variables for the SUP group and in 10 variables for the UNSUP group. CONCLUSION: Twelve weeks of BST proved to be safe (no training-related injuries) and feasible (high attendance rates of >90%). Deficits of balance and lower extremity muscle power can be mitigated by BST in healthy older adults. Additionally, supervised as compared to unsupervised BST was more effective. Thus, it is recommended to counteract intrinsic fall risk factors by applying supervised BST programs for older adults.


Subject(s)
Accidental Falls/prevention & control , Lower Extremity , Muscle Strength , Postural Balance , Resistance Training/methods , Aged , Aged, 80 and over , Female , Humans , Independent Living , Male , Patient Compliance , Walk Test
9.
Gerontology ; 62(1): 118-24, 2015.
Article in English | MEDLINE | ID: mdl-26021781

ABSTRACT

BACKGROUND: Accidental falls remain an important problem in older people. The five-times-sit-to-stand (5STS) test is commonly used as a functional test to assess fall risk. Recent advances in sensor technologies hold great promise for more objective and accurate assessments. OBJECTIVE: The aims of this study were: (1) to examine the feasibility of a low-cost and portable Kinect-based 5STS test to discriminate between fallers and nonfallers and (2) to investigate whether this test can be used for supervised clinical, supervised and unsupervised in-home fall risk assessments. METHODS: A total of 94 community-dwelling older adults were assessed by the Kinect-based 5STS test in the laboratory and 20 participants were tested in their own homes. An algorithm was developed to automatically calculate timing- and speed-related measurements from the Kinect-based sensor data to discriminate between fallers and nonfallers. The associations of these measurements with standard clinical fall risk tests and the results of supervised and unsupervised in-home assessments were examined. RESULTS: Fallers were significantly slower than nonfallers on Kinect-based measures. The mean velocity of the sit-to-stand transitions discriminated well between the fallers and nonfallers based on 12-month retrospective fall data. The Kinect-based measures collected in the laboratory correlated strongly with those collected in the supervised (r = 0.704-0.832) and unsupervised (r = 0.775-0.931) in-home assessments. CONCLUSION: In summary, we found that the Kinect-based 5STS test discriminated well between the fallers and nonfallers and was feasible to administer in clinical and supervised in-home settings. This test may be useful in clinical settings for identifying high-risk fallers for further intervention or for regular in-home assessments in the future.


Subject(s)
Accidental Falls , Risk Assessment/methods , Aged , Aged, 80 and over , Biomechanical Phenomena , Female , Humans , Independent Living , Male , Postural Balance , Posture , Retrospective Studies
10.
Eur Rev Aging Phys Act ; 12: 10, 2015.
Article in English | MEDLINE | ID: mdl-26865874

ABSTRACT

BACKGROUND: Falls and fall-related injuries are a serious public health issue. Exercise programs can effectively reduce fall risk in older people. The iStoppFalls project developed an Information and Communication Technology-based system to deliver an unsupervised exercise program in older people's homes. The primary aims of the iStoppFalls randomized controlled trial were to assess the feasibility (exercise adherence, acceptability and safety) of the intervention program and its effectiveness on common fall risk factors. METHODS: A total of 153 community-dwelling people aged 65+ years took part in this international, multicentre, randomized controlled trial. Intervention group participants conducted the exercise program for 16 weeks, with a recommended duration of 120 min/week for balance exergames and 60 min/week for strength exercises. All intervention and control participants received educational material including advice on a healthy lifestyle and fall prevention. Assessments included physical and cognitive tests, and questionnaires for health, fear of falling, number of falls, quality of life and psychosocial outcomes. RESULTS: The median total exercise duration was 11.7 h (IQR = 22.0) over the 16-week intervention period. There were no adverse events. Physiological fall risk (Physiological Profile Assessment, PPA) reduced significantly more in the intervention group compared to the control group (F1,127 = 4.54, p = 0.035). There was a significant three-way interaction for fall risk assessed by the PPA between the high-adherence (>90 min/week; n = 18, 25.4 %), low-adherence (<90 min/week; n = 53, 74.6 %) and control group (F2,125 = 3.12, n = 75, p = 0.044). Post hoc analysis revealed a significantly larger effect in favour of the high-adherence group compared to the control group for fall risk (p = 0.031), postural sway (p = 0.046), stepping reaction time (p = 0.041), executive functioning (p = 0.044), and quality of life (p for trend = 0.052). CONCLUSIONS: The iStoppFalls exercise program reduced physiological fall risk in the study sample. Additional subgroup analyses revealed that intervention participants with better adherence also improved in postural sway, stepping reaction, and executive function. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry Trial ID: ACTRN12614000096651 International Standard Randomised Controlled Trial Number: ISRCTN15932647.

11.
Eur Rev Aging Phys Act ; 12: 11, 2015.
Article in English | MEDLINE | ID: mdl-26865875

ABSTRACT

BACKGROUND: There is good evidence that balance challenging exercises can reduce falls in older people. However, older people often find it difficult to incorporate such programs in their daily life. Videogame technology has been proposed to promote enjoyable, balance-challenging exercise. As part of a larger analysis, we compared feasibility and efficacy of two exergame interventions: step-mat-training (SMT) and Microsoft-Kinect® (KIN) exergames. METHODS: 148 community-dwelling people, aged 65+ years participated in two exergame studies in Sydney, Australia (KIN: n = 57, SMT: n = 91). Both interventions were delivered as unsupervised exercise programs in participants' homes for 16 weeks. Assessment measures included overall physiological fall risk, muscle strength, finger-press reaction time, proprioception, vision, balance and executive functioning. RESULTS: For participants allocated to the intervention arms, the median time played each week was 17 min (IQR 32) for KIN and 48 min (IQR 94) for SMT. Compared to the control group, SMT participants improved their fall risk score (p = 0.036), proprioception (p = 0.015), reaction time (p = 0.003), sit-to-stand performance (p = 0.011) and executive functioning (p = 0.001), while KIN participants improved their muscle strength (p = 0.032) and vision (p = 0.010), and showed a trend towards improved fall risk scores (p = 0.057). CONCLUSIONS: The findings suggest that it is feasible for older people to conduct an unsupervised exercise program at home using exergames. Both interventions reduced fall risk and SMT additionally improved specific cognitive functions. However, further refinement of the systems is required to improve adherence and maximise the benefits of exergames to deliver fall prevention programs in older people's homes. TRIAL REGISTRATIONS: ACTRN12613000671763 (Step Mat Training RCT) ACTRN12614000096651 (MS Kinect RCT).

12.
Eur Rev Aging Phys Act ; 12: 13, 2015.
Article in English | MEDLINE | ID: mdl-26865877

ABSTRACT

BACKGROUND: Falls in older people represent a major age-related health challenge facing our society. Novel methods for delivery of falls prevention programs are required to increase effectiveness and adherence to these programs while containing costs. The primary aim of the Information and Communications Technology-based System to Predict and Prevent Falls (iStoppFalls) project was to develop innovative home-based technologies for continuous monitoring and exercise-based prevention of falls in community-dwelling older people. The aim of this paper is to describe the components of the iStoppFalls system. METHODS: The system comprised of 1) a TV, 2) a PC, 3) the Microsoft Kinect, 4) a wearable sensor and 5) an assessment and training software as the main components. RESULTS: The iStoppFalls system implements existing technologies to deliver a tailored home-based exercise and education program aimed at reducing fall risk in older people. A risk assessment tool was designed to identify fall risk factors. The content and progression rules of the iStoppFalls exergames were developed from evidence-based fall prevention interventions targeting muscle strength and balance in older people. CONCLUSIONS: The iStoppFalls fall prevention program, used in conjunction with the multifactorial fall risk assessment tool, aims to provide a comprehensive and individualised, yet novel fall risk assessment and prevention program that is feasible for widespread use to prevent falls and fall-related injuries. This work provides a new approach to engage older people in home-based exercise programs to complement or provide a potentially motivational alternative to traditional exercise to reduce the risk of falling.

13.
BMC Geriatr ; 14: 91, 2014 Aug 20.
Article in English | MEDLINE | ID: mdl-25141850

ABSTRACT

BACKGROUND: Falls are very common, especially in adults aged 65 years and older. Within the current international European Commission's Seventh Framework Program (FP7) project 'iStoppFalls' an Information and Communication Technology (ICT) based system has been developed to regularly assess a person's risk of falling in their own home and to deliver an individual and tailored home-based exercise and education program for fall prevention. The primary aims of iStoppFalls are to assess the feasibility and acceptability of the intervention program, and its effectiveness to improve balance, muscle strength and quality of life in older people. METHODS/DESIGN: This international, multicenter study is designed as a single-blinded, two-group randomized controlled trial. A total of 160 community-dwelling older people aged 65 years and older will be recruited in Germany (n = 60), Spain (n = 40), and Australia (n = 60) between November 2013 and May 2014. Participants in the intervention group will conduct a 16-week exercise program using the iStoppFalls system through their television set at home. Participants are encouraged to exercise for a total duration of 180 minutes per week. The training program consists of a variety of balance and strength exercises in the form of video games using exergame technology. Educational material about a healthy lifestyle will be provided to each participant. Final reassessments will be conducted after 16 weeks. The assessments include physical and cognitive tests as well as questionnaires assessing health, fear of falling, quality of life and psychosocial determinants. Falls will be followed up for six months by monthly falls calendars. DISCUSSION: We hypothesize that the regular use of this newly developed ICT-based system for fall prevention at home is feasible for older people. By using the iStoppFalls sensor-based exercise program, older people are expected to improve in balance and strength outcomes. In addition, the exercise training may have a positive impact on quality of life by reducing the risk of falls. Taken together with expected cognitive improvements, the individual approach of the iStoppFalls program may provide an effective model for fall prevention in older people who prefer to exercise at home. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry Trial ID: ACTRN12614000096651.International Standard Randomised Controlled Trial Number: ISRCTN15932647.


Subject(s)
Accidental Falls/prevention & control , Internationality , Medical Informatics/methods , Virtual Reality Exposure Therapy/methods , Aged , Aged, 80 and over , Female , Humans , Male , Medical Informatics/trends , Predictive Value of Tests , Single-Blind Method , Virtual Reality Exposure Therapy/trends
14.
Aging Clin Exp Res ; 26(2): 221-8, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24619887

ABSTRACT

BACKGROUND AND AIMS: Gait and balance impairments lead to falls and injuries in older people. Walking aids are meant to increase gait safety and prevent falls, yet little is known about how their use alters gait parameters. This study aimed to quantify gait in older adults during walking without and with different walking aids and to compare gait parameters to matched controls. METHODS: This retrospective study included 65 older (≥60 years) community dwellers who used a cane, crutch or walker and 195 independently mobile-matched controls. Spatio-temporal gait parameters were measured with an electronic walkway system during normal walking. RESULTS: When walking unaided or aided, walking aid users had significantly worse gait than matched controls. Significant differences between the walking aid groups were found for stride time variability (cane vs. walker) in walking unaided only. Gait performances significantly improved when assessed with vs. without the walking aid for the cane (increased stride time and length, decreased cadence and stride length variability), crutch (increased stride time and length, decreased cadence, stride length variability and double support) and walker (increased gait speed and stride length, decreased base of support and double support) users. CONCLUSION: Gait in older adults who use a walking aid is more irregular and unstable than gait in independently mobile older adults. Walking aid users have better gait when using their walking aid than when walking without it. The changes in gait were different for the different types of walking aids used. These study results may help better understand gait in older adults and differentiate between pathological gait changes and compensatory gait changes due to the use of a walking aid.


Subject(s)
Aging/physiology , Canes , Crutches , Gait/physiology , Walkers , Accidental Falls/prevention & control , Aged , Aged, 80 and over , Case-Control Studies , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Retrospective Studies , Walking/physiology
15.
Article in English | MEDLINE | ID: mdl-25571596

ABSTRACT

Accidental falls remain an important problem in older people. Stepping is a common task to avoid a fall and requires good interplay between sensory functions, central processing and motor execution. Increased choice stepping reaction time has been associated with recurrent falls in older people. The aim of this study was to examine if a sensor-based Exergame Choice Stepping Reaction Time test can successfully discriminate older fallers from non-fallers. The stepping test was conducted in a cohort of 104 community-dwelling older people (mean age: 80.7 ± 7.0 years). Participants were asked to step laterally as quickly as possible after a light stimulus appeared on a TV screen. Spatial and temporal measurements of the lower and upper body were derived from a low-cost and portable 3D-depth sensor (i.e. Microsoft Kinect) and 3D-accelerometer. Fallers had a slower stepping reaction time (970 ± 228 ms vs. 858 ± 123 ms, P = 0.001) and a slower reaction of their upper body (719 ± 289 ms vs. 631 ± 166 ms, P = 0.052) compared to non-fallers. It took fallers significantly longer than non-fallers to recover their balance after initiating the step (2147 ± 800 ms vs. 1841 ± 591 ms, P = 0.029). This study demonstrated that a sensor-based, low-cost and easy to administer stepping test, with the potential to be used in clinical practice or regular unsupervised home assessments, was able to identify significant differences between performances by fallers and non-fallers.


Subject(s)
Accidental Falls/prevention & control , Exercise Therapy/methods , Risk Assessment , Video Games , Acceleration , Aged , Aged, 80 and over , Choice Behavior , Cohort Studies , Exercise Test , Female , Humans , Imaging, Three-Dimensional , Male , Postural Balance , Reaction Time , Walking
16.
Gerontology ; 60(2): 123-9, 2014.
Article in English | MEDLINE | ID: mdl-24335110

ABSTRACT

BACKGROUND: Recent studies have shown that vitamin D status may be relevant for physical and cognitive performance in the older population. This association may be of particular interest to older people at risk for cognitive impairment and functional decline. OBJECTIVE: The aim of this study was to determine the association between serum 25-hydroxyvitamin D [25(OH)D] status and functional mobility in seniors assessed in a memory clinic. METHODS: We conducted a cross-sectional study of outpatients (n = 404) in a memory clinic. Functional mobility was assessed with three endpoints: normal and fast walking speed and the Timed Up and Go (TUG) test. Adjusted multivariate analyses in all patients and two pre-planned subgroup analyses in vulnerable seniors (previous fall and MMSE score of ≥26 or no previous fall and MMSE score of <26) versus less vulnerable seniors (no previous fall and MMSE score of ≥26) were performed to assess the association of 25(OH)D and functional mobility. RESULTS: Overall, mean 25(OH)D serum levels were 63.2 ± 33.9 nmol/l, and 41.3% were vitamin D deficient (<50 nmol/l). Seniors in the lowest 25(OH)D quartile (<39 nmol/l) had significantly worse functional mobility compared to the highest 25(OH)D quartile (>81 nmol/l); adjusted for all covariates, seniors in the highest quartile performed 9.4% better in normal (p = 0.02) and 9.2% better in fast (p = 0.004) walking speed, and 4.4% better in the TUG test (p = 0.24). The association between 25(OH)D status and functional mobility was most pronounced in less vulnerable seniors (p for trend significant for all three mobility tests). Seniors with a higher 25(OH)D status also had better cognitive function (MMSE score; p = 0.006). CONCLUSIONS: Lower serum 25(OH)D status is associated with poorer functional mobility and cognitive function, therefore supporting 25(OH)D assessment in this population at risk for both functional and cognitive decline.


Subject(s)
Aging/blood , Aging/physiology , Memory/physiology , Vitamin D/analogs & derivatives , Aged , Aged, 80 and over , Aging/psychology , Cognition/physiology , Cognition Disorders/blood , Cognition Disorders/physiopathology , Cognition Disorders/psychology , Cross-Sectional Studies , Female , Humans , Male , Memory Disorders/blood , Memory Disorders/physiopathology , Memory Disorders/psychology , Mental Status Schedule , Mobility Limitation , Physical Fitness/physiology , Physical Fitness/psychology , Risk Factors , Vitamin D/blood , Walking/physiology , Walking/psychology
17.
BMC Geriatr ; 13: 105, 2013 Oct 09.
Article in English | MEDLINE | ID: mdl-24106864

ABSTRACT

BACKGROUND: With increasing age neuromuscular deficits (e.g., sarcopenia) may result in impaired physical performance and an increased risk for falls. Prominent intrinsic fall-risk factors are age-related decreases in balance and strength / power performance as well as cognitive decline. Additional studies are needed to develop specifically tailored exercise programs for older adults that can easily be implemented into clinical practice. Thus, the objective of the present trial is to assess the effects of a fall prevention program that was developed by an interdisciplinary expert panel on measures of balance, strength / power, body composition, cognition, psychosocial well-being, and falls self-efficacy in healthy older adults. Additionally, the time-related effects of detraining are tested. METHODS/DESIGN: Healthy old people (n = 54) between the age of 65 to 80 years will participate in this trial. The testing protocol comprises tests for the assessment of static / dynamic steady-state balance (i.e., Sharpened Romberg Test, instrumented gait analysis), proactive balance (i.e., Functional Reach Test; Timed Up and Go Test), reactive balance (i.e., perturbation test during bipedal stance; Push and Release Test), strength (i.e., hand grip strength test; Chair Stand Test), and power (i.e., Stair Climb Power Test; countermovement jump). Further, body composition will be analysed using a bioelectrical impedance analysis system. In addition, questionnaires for the assessment of psychosocial (i.e., World Health Organisation Quality of Life Assessment-Bref), cognitive (i.e., Mini Mental State Examination), and fall risk determinants (i.e., Fall Efficacy Scale - International) will be included in the study protocol. Participants will be randomized into two intervention groups or the control / waiting group. After baseline measures, participants in the intervention groups will conduct a 12-week balance and strength / power exercise intervention 3 times per week, with each training session lasting 30 min. (actual training time). One intervention group will complete an extensive supervised training program, while the other intervention group will complete a short version ('3 times 3') that is home-based and controlled by weekly phone calls. Post-tests will be conducted right after the intervention period. Additionally, detraining effects will be measured 12 weeks after program cessation. The control group / waiting group will not participate in any specific intervention during the experimental period, but will receive the extensive supervised program after the experimental period. DISCUSSION: It is expected that particularly the supervised combination of balance and strength / power training will improve performance in variables of balance, strength / power, body composition, cognitive function, psychosocial well-being, and falls self-efficacy of older adults. In addition, information regarding fall risk assessment, dose-response-relations, detraining effects, and supervision of training will be provided. Further, training-induced health-relevant changes, such as improved performance in activities of daily living, cognitive function, and quality of life, as well as a reduced risk for falls may help to lower costs in the health care system. Finally, practitioners, therapists, and instructors will be provided with a scientifically evaluated feasible, safe, and easy-to-administer exercise program for fall prevention.


Subject(s)
Accidental Falls/prevention & control , Exercise/physiology , Muscle Strength/physiology , Postural Balance/physiology , Resistance Training/methods , Social Support , Aged , Aged, 80 and over , Exercise/psychology , Exercise Therapy/methods , Female , Hand Strength/physiology , Humans , Male
18.
Swiss Med Wkly ; 141: w13305, 2011.
Article in English | MEDLINE | ID: mdl-22101891

ABSTRACT

During the 20th century Switzerland, like many other Western countries, experienced significant ageing of the population over the age of 65. As the lifespan of the Swiss population increases, so does the prevalence of falls. A multiplicity of fall prevention programmes are available, but extracting their most effective components remains a challenge. This article summarises the results of current studies on fall prevention, with a particular focus on methodological quality and successful reduction of fall incidence in vulnerable older people. Characteristics of effective fall prevention programmes in the fields of exercise, home modifications, appropriate footwear and walking aids are assessed. We then briefly discuss how these study results can be adapted to the Swiss context. This knowledge emphasises an interdisciplinary approach in the prevention of falls, the objective being to reinforce autonomy, promote health and enhance quality of life in vulnerable older people.


Subject(s)
Accidental Falls/prevention & control , Aged , Aged, 80 and over , Exercise , Female , Health Promotion/methods , Humans , Male , Shoes , Switzerland
SELECTION OF CITATIONS
SEARCH DETAIL
...