Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Epidemics ; 11: 80-4, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25979285

ABSTRACT

International air travel has already spread Ebola virus disease (EVD) to major cities as part of the unprecedented epidemic that started in Guinea in December 2013. An infected airline passenger arrived in Nigeria on July 20, 2014 and caused an outbreak in Lagos and then Port Harcourt. After a total of 20 reported cases, including 8 deaths, Nigeria was declared EVD free on October 20, 2014. We quantified the impact of early control measures in preventing further spread of EVD in Nigeria and calculated the risk that a single undetected case will cause a new outbreak. We fitted an EVD transmission model to data from the outbreak in Nigeria and estimated the reproduction number of the index case at 9.0 (95% confidence interval [CI]: 5.2-15.6). We also found that the net reproduction number fell below unity 15 days (95% CI: 11-21 days) after the arrival of the index case. Hence, our study illustrates the time window for successful containment of EVD outbreaks caused by infected air travelers.


Subject(s)
Disease Outbreaks/statistics & numerical data , Hemorrhagic Fever, Ebola/epidemiology , Humans , Models, Theoretical , Nigeria/epidemiology
3.
Clin Pharmacol Ther ; 91(2): 234-42, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22205196

ABSTRACT

Our objective was to show, using two examples, that a pharmacokinetic (PK) similarity analysis can be performed using nonlinear mixed-effects models (NLMEM). We used two studies that compared different biosimilars: a three-way crossover trial with somatropin and a parallel-group trial with epoetin-α. For both data sets, the results of NLMEM-based analysis were compared with those of noncompartmental analysis (NCA). For the latter analysis, we performed an NLMEM-based equivalence Wald test on secondary parameters of the model: the area under the curve and the maximal concentration. Somatropin PK was described by a one-compartment model and epoetin-α PK by a two-compartment model with linear and Michaelis-Menten elimination. For both studies, similarity of PK was demonstrated by means of both NCA and NLMEM, and both methods led to similar results. Therefore, for establishing similarity, PK data can be analyzed by either of the methods. NCA is an easier approach because it does not require data modeling; however, NLMEM leads to a better understanding of the underlying biological system.


Subject(s)
Biological Products/pharmacokinetics , Erythropoietin/pharmacokinetics , Human Growth Hormone/pharmacokinetics , Nonlinear Dynamics , Clinical Trials as Topic/statistics & numerical data , Epoetin Alfa , Humans , Recombinant Proteins/pharmacokinetics
4.
J Biopharm Stat ; 21(4): 708-25, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21516565

ABSTRACT

Many applications in biostatistics rely on nonlinear regression models, such as, for example, population pharmacokinetic and pharmacodynamic modeling, or modeling approaches for dose-response characterization and dose selection. Such models are often expressed as nonlinear mixed-effects models, which are implemented in all major statistical software packages. Inference on the model curve can be based on the estimated parameters, from which pointwise confidence intervals for the mean profile at any single point in the covariate region (time, dose, etc.) can be derived. These pointwise confidence intervals, however, should not be used for simultaneous inferences beyond that single covariate value. If assessment over the entire covariate region is required, the joint coverage probability by using the combined pointwise confidence intervals is likely to be less than the nominal coverage probability. In this paper we consider simultaneous confidence bands for the mean profile over the covariate region of interest and propose two large-sample methods for their construction. The first method is based on the Schwarz inequality and an asymptotic χ(2) distribution. The second method relies on simulating from a multivariate normal distribution. We illustrate the methods with the pharmacokinetics of theophylline. In addition, we report the results of an extensive simulation study to investigate the operating characteristics of the two construction methods. Finally, we present extensions to construct simultaneous confidence bands for the difference of two models and to assess equivalence between two models in biosimilarity applications.


Subject(s)
Biostatistics/methods , Confidence Intervals , Models, Biological , Models, Statistical , Pharmacokinetics , Computer Simulation , Data Interpretation, Statistical , Humans , Nonlinear Dynamics , Normal Distribution , Regression Analysis , Theophylline/blood , Theophylline/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...