Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Ying Yong Sheng Tai Xue Bao ; 33(8): 2161-2170, 2022 Aug.
Article in Chinese | MEDLINE | ID: mdl-36043823

ABSTRACT

Nitrogen is the most limiting nutrient for ecosystems. The natural abundance of δ15N (15N/14N) can efficiently indicate ecosystem nitrogen cycling processes. We investigated the interannual variations in natural abundance of δ15N in soil-plant system and soil net nitrogen mineralization in a meadow steppe of Inner Mongolia. Results across the four sampling years (2017-2020) showed that the content of soil NO3--N (9.83-14.79 mg·kg-1) was significantly higher than that of NH4+-N (3.92-5.00 mg·kg-1) and that δ15N value of soil NH4+ (13.3‰-18.3‰) was significantly higher than that of NO3-(3.76‰-6.14‰). The δ15N value of soil NO3- was negatively correlated with soil NO3- content. The δ15N value of soil NH4+ was relatively higher in the dry years, while the δ15N value of soil NO3- significantly decreased in the wetter and drier years. Soil net mineralization and ammonification rates were significantly higher in the dry years than that of the wet years, while soil nitrification rates showed no correlation with annual precipitation. The δ15N values of plants were not related to that of soils, but nega-tively correlated with plant nitrogen content. Both δ15N values and nitrogen contents were significantly and positively correlated between the leguminous and non-leguminous plants, suggesting that legume could facilitate nitrogen uptake of non-leguminous plants. These results could provide supporting data for nitrogen cycling and their responses to changes in precipitation in grassland soil-plant systems.


Subject(s)
Ecosystem , Soil , China , Grassland , Nitrogen/analysis , Nitrogen Isotopes/analysis , Plants
SELECTION OF CITATIONS
SEARCH DETAIL
...