Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Food Sci ; 88(10): 4156-4168, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37623924

ABSTRACT

Improving total dietary fiber content while maintaining the texture/expansion of extruded products is a challenge. Pectin has a dual function; it is a source of dietary fiber and it also functions as a hydrocolloid, which could improve the texture of high-fiber extruded foods. The objective of this study was to evaluate the impacts of pectin types from citrus peel on the expansion characteristics of starch-cellulose extrudates. High and low methoxyl pectin (HMP and LMP) was added to the starch-cellulose mixtures and extruded using a twin-screw extruder. The pasting properties of raw mixtures, extrusion properties, microstructure, and dietary fiber contents of the extrudates were studied. The inclusion of HMP in raw material improved the peak viscosity (629.7 ± 8.1 to 754.7 ± 80.1 mPa s) and maintained the final viscosity compared to the control (starch-cellulose mixture alone), unlike LMP. HMP relatively maintained the extrusion process parameters such as torque, back pressure, and specific mechanical energy as the control. Interestingly, the addition of 7% of HMP had a similar expansion ratio (3.41 ± 0.08 to 2.35 ± 0.06) compared to the control (3.46 ± 0.08 to 2.32 ± 0.09) under the extrusion conditions studied. The total dietary fiber content improved from 12.22 ± 0.01% to 18.26 ± 0.63% (w/w). HMP maintained the expansion characteristic of starch-cellulose extrudates and improved its total dietary fiber content relative to LMP. Adding HMP to the mixtures improved the extensibility of the melt, favoring bubble growth and expansion of the starch-cellulose extrudates. Fourier transform infrared spectroscopy data suggested that there could be intermolecular interactions between starch, cellulose, and pectin, but the nature of these interactions needs further investigation. PRACTICAL APPLICATION: The study provides practical information on the influence of the addition of high and low methoxyl pectin on starch-cellulose extrudates. The results can help the industry to produce snack products that are more nutritious but are still well accepted by the consumers.

2.
Foods ; 12(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36900528

ABSTRACT

The increase in meat consumption could adversely affect the environment. Thus, there is growing interest in meat analogs. Soy protein isolate is the most common primary material to produce low- and high-moisture meat analogs (LMMA and HMMA), and full-fat soy (FFS) is another promising ingredient for LMMA and HMMA. Therefore, in this study, LMMA and HMMA with FFS were manufactured, and then their physicochemical properties were investigated. The water holding capacity, springiness, and cohesiveness of LMMA decreased with increasing FFS contents, whereas the integrity index, chewiness, cutting strength, degree of texturization, DPPH free radical scavenging activity, and total phenolic content of LMMA increased when FFS contents increased. While the physical properties of HMMA decreased with the increasing FFS content, its DPPH free radical scavenging activity and total phenolic contents increased. In conclusion, when full-fat soy content increased from 0% to 30%, there was a positive influence on the fibrous structure of LMMA. On the other hand, the HMMA process requires additional research to improve the fibrous structure with FFS.

3.
J Food Sci ; 88(2): 784-794, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36647678

ABSTRACT

The inclusion of cellulose nanocrystals (CNC) and microcrystalline cellulose (MCC) during extrusion processing of corn starch (CS) is presented in this study. Blends were prepared by incorporating CNC and MCC at different concentrations, 1%, 3%, 5%, and 10% w/w in CS. The crystallinity index (CrI) of CNC and MCC was determined using X-ray diffraction, and the chemical functionality of CNC, MCC, and CS was studied using Fourier transform infrared spectroscopy. The pasting properties of the blends were studied using Micro Visco-Amylo-Graph before extrusion. The blends were preconditioned to 18 ± 0.5% (w.b.) moisture and extruded using a twin-screw extruder at 200 and 250 rpm at 140°C. CS-CNC's expansion ratio (ER) values were 2.95 to 3.35 and 2.72 to 3.22 for MCC. CNC's CrI and particle size were significantly lower than MCC, allowing CNC-based extrudates to have ER values similar to the control even at high CNC concentration (≤10% w/w). This study demonstrated that fiber with particle size <100 µm can be added in direct-expanded product formulations at high concentrations without negatively influencing the extrudate texture while offering increased nutritional value. PRACTICAL APPLICATION: This study gives insight into the potential application of cellulose nanocrystals and microcrystalline cellulose in manufacturing direct-expanded extruded products, providing high fiber content without compromising the product quality. This knowledge could also be translated into manufacturing other food products such as breakfast cereals, pasta, and bread.


Subject(s)
Starch , Zea mays , Starch/chemistry , Particle Size , Cellulose/chemistry , X-Ray Diffraction
4.
J Food Sci ; 87(12): 5349-5362, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36382863

ABSTRACT

Ten novel breeding lines of quinoa (Chenopodium quinoa Willd) suitable to be grown in the Pacific Northwest of the United States were developed and utilized for extrusion processing. Understanding how a particular breeding line performs during food processing and which properties determine its performance can promote the use of quinoa as an ingredient in value-added products, such as extruded snacks. In this study, extrusion characteristics of the whole seed flours of the novel quinoa breeding lines were evaluated using a co-rotating twin-screw extruder at two temperatures (110°C and 125°C), three screw speeds (200, 350, and 500 rpm), and a moisture content of 18% (w.b.). The expansion ratio (ER) ranged from 1.15 to 2.33 and was negatively influenced by the fat content in the flours. Breeding line 11WAQ-104.88 (WAQ10) exhibited the greatest potential for use in direct expanded foods as it had the highest ER for all conditions studied. Strong correlations were found between ER and pasting properties of the flours, proving the usefulness of the pasting test for flour quality evaluation before extrusion processing. The results demonstrate the potential of using quinoa for producing direct expanded food products and highlight the importance of selecting specific breeding lines for desired product characteristics. PRACTICAL APPLICATION: This study provides the extrusion processing characteristics of 10 new quinoa breeding lines. Based on the information gained, it will be easier for the food industry, including breeders as well as processors, to select the right quinoa variety based on their requirements, and may further help to enhance the use of quinoa.


Subject(s)
Chenopodium quinoa , Plant Breeding , Flour/analysis , Food Handling/methods , Temperature
5.
J Food Sci ; 87(8): 3513-3527, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35822450

ABSTRACT

Due to their dense characteristics, direct-expanded products fortified with insoluble fiber are generally not well accepted. Understanding the interactions between starch and fiber could help to effectively choose and modify ingredients to produce products containing high amounts of fiber. Therefore, this study aims to explain the interplay between two starches (native and waxy corn) and two pomace types (blueberry and cranberry). Blends up to 100% of pomace were extruded using a co-rotating twin-screw extruder. Raw material and milled extrudates were analyzed for their pasting and hydration properties. Fourier-transform infrared (FTIR) and solid-state nuclear magnetic resonance (NMR) spectroscopy were conducted to observe molecular changes. The expansion ratio (ER) significantly decreased as pomace was added and ranged from 3.85 for pure waxy corn starch to approximately 1 for blends that contained 80% pomace. Distinctions between the blends were observed. Particularly, at 20% of pomace inclusion, native corn starch with cranberry pomace showed a significantly higher ER. Different behaviors were also detected during the physicochemical analyses. A nonlinear trend between pomace level and water solubility as well as absorption was observed for native corn starch blends, suggesting that molecular interactions between the biopolymers occur. FTIR and NMR results give no evidence for new covalent bonds; hence, the most likely interactions occurring are hydrogen bonds. In addition to the dilution effect of pomace addition, the enhancement or weakening of such interactions between starch molecules by pomace compounds may reduce the ER.


Subject(s)
Starch , Vaccinium macrocarpon , Amylopectin/analysis , Dietary Fiber/analysis , Food Handling/methods , Fruit/chemistry , Plant Extracts/chemistry , Starch/chemistry , Zea mays/chemistry
6.
Curr Res Food Sci ; 4: 588-597, 2021.
Article in English | MEDLINE | ID: mdl-34485927

ABSTRACT

Incorporating fiber at high levels (>10%) into direct-expanded products with acceptable texture is challenging. Fundamental explanations for the interaction of starch and fiber and the cause of expansion reduction need further understanding for the effective incorporation of fiber into expanded products. This study aims to explain how cellulose content impacts the physicochemical properties of starch-based extrudates and the long-range and short-range molecular changes of starch. Mixtures of cornstarch (50% amylose) and cellulose were extruded using a co-rotating twin-screw extruder. Thermal and pasting properties of the raw mixtures were evaluated, and the physicochemical properties and microstructure of extrudates were determined. Long-range and short-range molecular changes of starch-cellulose mixtures before and after extrusion were observed by X-ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy. The expansion ratio of extrudates reduced significantly as the cellulose content increased and had a strong negative correlation with crystallinity. Cell structures of starch-cellulose extrudates had a smaller and more uniform pore size but possessing a more ruptured matrix. FTIR spectra suggested that there was no covalent bonding interaction between starch and fiber after extrusion. Extrusion reduced the overall crystallinity compared to the raw mixtures. XRD showed that the crystallinity of the starch-cellulose extrudates increased as the cellulose content increased, and the XRD peaks representing cellulose remained unchanged. Cellulose could interfere with starch chain reassociation through intermolecular hydrogen bonding during the expansion process. Phase separation of starch and cellulose is likely to occur at high cellulose content, which could be another reason for the reduced expansion.

7.
J Food Sci ; 86(3): 942-951, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33565641

ABSTRACT

The properties of flours and extrusion characteristics, of three lentil varieties (Brewer, Crimson, and Richlea) were studied. The effects of barrel temperature (110, 125, and 140 °C) and screw speed (150, 200, and 250 rpm) on process responses and extrudate characteristics were evaluated using a corotating twin-screw extruder. The three varieties of lentils had significant differences (p < 0.05) in their starch (48.7% to 50.9%), protein (20.4% to 22.7%), and fat content (1.3% to 1.9%), gelatinization temperature (71.7 to 74.6 °C), peak viscosity (123.3 to 179.7 mPa.s), and melting temperature (113.6 to 119.7 °C). The lentil variety, barrel temperature, and screw speed significantly impacted the process responses and extrudate properties. Whole lentil flours exhibited the highest expansion ratio (3.0 to 3.6) at the lowest temperature (110 °C) and the highest screw speed (250 rpm). Richlea variety had the highest expansion ratio (3.6) and the highest water solubility index (45.4%) as it had the highest starch content and peak viscosity, and the lowest protein content and melting temperature. Meanwhile, Brewer variety exhibited the lowest expansion ratio (1.9 to 3.0) compared to Richlea (2.5 to 3.6) and Crimson (2.4 to 3.0) in most of the extrusion conditions studied. Richlea variety was the most suitable for making direct-expanded extrudates among the varieties studied. The significant differences in the properties of flours from the three varieties of lentils resulted in significant impacts on the properties of their extrudates. Therefore, determining the properties of flours of different varieties is useful to select the appropriate varieties for extrusion processing. PRACTICAL APPLICATION: The information from this study is useful for the food industry to select the appropriate lentil varieties and processing conditions for the development of direct-expanded products. The data prove the importance of understanding the chemical composition, pasting, and thermal properties to select the appropriate varieties for extrusion processing.


Subject(s)
Food Handling/methods , Lens Plant , Seeds/chemistry , Chemical Phenomena , Cold Temperature , Food Handling/instrumentation , Food Industry , Lens Plant/classification , Solubility , Species Specificity , Starch , Temperature , Viscosity
8.
J Food Sci ; 85(10): 3333-3344, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32949029

ABSTRACT

Extrusion processing characteristics of pea starch were studied as impacted by various extrusion cooking processing variables, including, moisture content (15%, 17.5%, and 20% w.b.), temperature (120, 135, and 150 °C), and screw speed (150, 200, and 250 rpm), in a co-rotating twin-screw extruder. Physicochemical properties such as radial expansion ratio (ER), unit density (UD), water absorption index (WAI), and water solubility index (WSI) were measured. ER of the extrudates ranged between 2.52 and 3.63. These values of ER were significantly high, although relatively lower compared to the highest values reported in the literature for corn and rice extrudates. The UD values for all the extrudates ranged from 0.12 to 0.35 g/cm3 , WAI, and WSI values ranged from 10.98 to 12.10 g/g and from 0.12% to 7.73%, respectively. Both screw speed and moisture content had significant impacts on the ER (P < 0.01). The highest ER was observed for the extrusion cooking conditions of the lowest moisture content level (15%), lowest barrel temperature (120 °C), and lowest screw speed (150 rpm). The cross-sectional microstructure of the extrudates showed that the samples with a high ER had thick and elongated pores. The results of this study indicate that pea starch is a viable ingredient for making puffed extruded products. PRACTICAL APPLICATION: The food industry can utilize the information generated from this study in the development of extruded expanded food products with pea starch. The specific information related to process conditions can assist the food industry in determining the ideal conditions for extrusion cooking in the production.


Subject(s)
Pisum sativum/chemistry , Plant Extracts/chemistry , Starch/chemistry , Cold Temperature , Cooking/methods , Cross-Sectional Studies , Food Handling/methods , Food Industry , Oryza/chemistry , Solubility , Temperature , Water/analysis , Zea mays/chemistry
9.
J Food Sci ; 85(7): 2134-2142, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32506502

ABSTRACT

Nuña bean, also known as "popping" bean, belongs to the group of common beans (Phaseolus vulgaris, L.). Originated in Andean mountains, nuña beans is an important food crop in several South American countries, including Bolivia, Ecuador, and Peru, where it is consumed primarily as a snack. Nuña beans are highly nutritious and have a distinctive nutty flavor, which makes them potentially desirable ingredients in food applications, such as extruded snacks. Thus, the goal of this study was to evaluate the performance of whole seed nuña bean flour during extrusion cooking. Expansion characteristics of whole nuña bean flour were investigated using a twin-screw extruder. Three levels of moisture contents of 15%, 18%, and 21% (wet basis), three barrel temperatures of 120, 140, and 160 °C, and three screw speeds of 150, 200, and 250 rpm were evaluated, with a die diameter of 3.15 mm. The expansion ratio (ER) ranged from 1.41 to 3.03, within the extrusion conditions studied. The moisture content and screw speed were found to have the most significant impact on the ER. Lower temperature and higher screw speed resulted in higher ER. The maximum ER of 3.03 was observed at a moisture content of 15%, a barrel temperature of 120 °C, and a screw speed of 250 rpm. Nuña bean flour exhibited good expansion properties at relatively low temperatures, which highlights its potential for use in extruded food applications such as nutritious snacks. PRACTICAL APPLICATION: There is increasing consumer demand for more nutritional snacks and cereals. Nuña bean flour exhibited potential for use in such nutritious products. This provides the industry with an alternative source of protein and fiber for inclusion in expanded food products.


Subject(s)
Flour/analysis , Food Handling/methods , Phaseolus/chemistry , Cold Temperature , Cooking , Dietary Fiber/analysis , Peru , Seeds/chemistry , Snacks , Solubility
10.
J Food Sci ; 85(2): 404-413, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31887250

ABSTRACT

Determining the impacts of extrusion conditions on extrudate characteristics of whole beans flours is critical to find the suitable types of beans to use for making direct expanded products. Whole bean flours of four different bean types, faba, lima, pinto, and red kidney, were extruded. The influence of barrel temperature (120, 140, and 160 °C), moisture content (17%, 21%, and 25%), and screw speed (150, 200, and 250 rpm) on process and product responses was studied with a corotating twin screw extruder. The barrel temperature, moisture content, screw speed, and variety of bean had significant influence on process and product responses, back pressure (MPa), torque (N·m), specific mechanical energy (kJ/kg), expansion ratio, water absorption index (g/g), and water solubility index (%) (P < 0.05). Faba bean extrudates had a significantly higher expansion ratio compared to other beans (lima, pinto, and red kidney beans) even though faba bean contained significantly higher protein and higher crude fiber contents (P < 0.05). PRACTICAL APPLICATION: The outputs of this research will be helpful to the food industry in the production of high nutrient-dense food products from whole beans by maintaining the expansion and texture of the products. The data should assist to choose the suitable types of whole bean flours and the optimum processing conditions for making direct expanded extruded products.


Subject(s)
Fabaceae/chemistry , Flour/analysis , Plant Preparations/isolation & purification , Vicia faba/chemistry , Food Handling , Food Industry , Plant Preparations/chemistry , Solubility , Temperature , Water/analysis
11.
Bioresour Technol ; 275: 266-271, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30594836

ABSTRACT

Proper screw design is crucial for effectively pre-treating wood fibers, to assist in the downstream enzymatic conversion of the cellulose into fermentable sugars. Initially, the impact of extruder barrel temperature (50, 100, and 150 °C) and screw speed (25, 50, and 75 rpm) were studied to arrive at the optimum conditions for sugar yield. Lower temperatures and screw speeds resulted in increased sugar yields. To examine the influence of shear imparted by the screws, the residuals samples were recovered from different zones along the screws and evaluated. Sugar yield, crystallinity index, and the particle size distribution of the material collected at different zones were determined. Glucose yield and xylose/mannose yields of the material along the screws, ranged from 23.25 to 42.88% and from 11.95 to 20.54%, respectively. The importance of the screw design was highlighted.


Subject(s)
Biomass , Cellulose/metabolism , Fermentation , Glucose/biosynthesis , Silicone Elastomers , Sugars/metabolism , Temperature
12.
J Food Sci ; 83(10): 2500-2510, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30211951

ABSTRACT

Expansion characteristics of cornstarch-based extrudates incorporating fiber-rich food processing byproducts was explored. Waxy and regular cornstarch were used as the base materials with apple pomace and sugarcane bagasse incorporated at two addition levels (0%, 15%, and 30% w/w). Extrusions were conducted at three different screw speeds (150, 200, and 250 rpm) with other parameters optimized and kept constant. Apple pomace inclusion resulted in higher initial expansion index (4.23 to 5.60) and higher stable expansion index (2.76 to 4.43), but also showed higher shrinkage (8.50% to 34.72%) than sugarcane bagasse extrudates at the same inclusion levels. Inclusion of apple pomace showed potential of producing extrudates with significantly higher expansion than cornstarch control, with relatively lower energy inputs. Extrusion methods used here have the potential to preserve the textural quality and nutritional value of the fiber-enriched extrudates, providing the base for healthier snack food items. PRACTICAL APPLICATION: Findings from this study can be extended to the other fiber-rich food processing byproducts, such as other fruit and vegetable pomace, cereal brans, and pulse hulls among other materials. This data will help the development of fiber-enriched extruded snacks that would have favorable consumer traits.


Subject(s)
Dietary Fiber/analysis , Plant Extracts/isolation & purification , Starch/isolation & purification , Waste Products/analysis , Cellulose/analysis , Flour/analysis , Food Handling/methods , Malus/chemistry , Nutritive Value , Plant Extracts/chemistry , Saccharum/chemistry , Snacks , Starch/chemistry , Vegetables/chemistry
13.
Bioresour Technol ; 269: 262-268, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30189379

ABSTRACT

The impact of independent variables of extrusion on dependent variables of pre-milled Douglas-fir forest residuals was studied to enhance the enzymatic hydrolysis for production of fermentable sugar without catalysts. Co-rotating twin screw extruder was operated with three different feedstock moisture contents (30, 40, and 50%) at four different barrel temperatures (25, 50, 100, and 150 °C) as a pretreatment. The specific mechanical energy input ranged from 0.07 and 0.30 kWh/kg and had a very strong positive correlation with torque (r = 0.96, p < 0.01), glucose (r = 0.92, p < 0.01) and xylose/mannose yields with (r = 0.84, p < 0.01). Douglas-fir residuals extruded at lowest moisture content (30%) and temperature (25 °C) had the highest sugar yield, requiring the highest SME. Higher barrel temperature increased the median particle size and had lower glucose and xylose/mannose yields. Recrystallization and agglomeration were observed under higher temperature conditions.


Subject(s)
Pseudotsuga , Sugars/metabolism , Carbohydrates , Fermentation , Hydrolysis , Temperature
14.
Bioresour Technol ; 260: 311-320, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29631181

ABSTRACT

Thermo-chemical pretreatments of biomass typically result in environmental impacts from water use and emission. The degradation byproducts in the resulting sugars can be inhibitory to the activities of enzymes and yeasts. The results of this study showed that combining existing commercial comminution technology can reduce total energy consumption with improved saccharification yield while eliminating chemical use. Impact mill was found to be the most efficient milling for size reduction of forest residual chips from ca. 2 mm to a specific value below 100 µm. The further micronization effectively disrupted the recalcitrance of the woody biomass and produced the highly saccharifiable substrates for downstream processing. In addition, extrusion can be integrated into a clean cellulosic sugar process for further fibrillation in place of the conventional mixing processing. The highest energy efficiency was observed on the impact-milled samples with 0.515 kg sugars kWh-1.


Subject(s)
Biomass , Sugars , Carbohydrates , Hydrolysis , Wood
15.
Bioresour Technol ; 251: 93-98, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29272773

ABSTRACT

Impact of planetary ball milling on pre-milled wood fiber was studied to improve efficiency of energy consumption for bioconversion using post-harvest forest residuals. Crystalline cellulose decreased from 40.73% to 11.70% by ball milling. Crystallinity index of ball milled wood samples had a negative correlation with glucose yield (r = -0.97, p < .01), xylose/mannose (r = -0.96, p < .01), and a positive correlation with median particle size (r = 0.77, p < .01). Range of glucose yield and xylose/mannose yield for ball milled samples was found to be 24.45-59.67% and from 11.92% to 23.82%, respectively. Morphological changes of the lignocellulosic biomass were observed; the compact fiber bundles of the forest residuals were cleaved to smaller particles with lower aspect ratio with increasing intensity of ball milling. The required energy ranged from 0.50 to 2.15 kWh/kg for 7-30 min of milling respectively.


Subject(s)
Pseudotsuga , Sugars , Cellulose , Forests , Wood
16.
J Food Sci ; 81(12): E2939-E2949, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27780310

ABSTRACT

Extrusion of 2 quinoa varieties, Cherry Vanilla and Black (scarified and unscarified) and a mixed quinoa variety, Bolivian Royal (scarified and degermed) were studied for their extrusion characteristics. A corotating twin-screw extruder with a 3 mm round die was used. Feed moisture contents of 15%, 20%, and 25% (wet basis) were studied. The extruder barrel temperature was kept constant at 140 °C and screw speeds were varied from 100, 150, and 200 revolutions per minutes. Process responses (specific mechanical energy, back pressure, and torque) and product responses (expansion ratio, unit density, and water absorption index/water solubility index) were evaluated. The degermed Bolivian Royal showed the highest expansion in comparison to all other varieties, attributed to its significantly low levels of fat, fiber, and protein. The scarified Cherry Vanilla resulted in the lowest expansion ratio. This was attributed to the increase in the protein content from the removal of the outer layer. The results indicate that all the varieties performed differently in the extrusion process due to their modification processes as well as the individual variety characteristics.


Subject(s)
Chenopodium quinoa/chemistry , Food Handling , Germination , Chemical Phenomena , Chenopodium quinoa/classification , Solubility , Temperature , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...