Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38352615

ABSTRACT

Slow waves are a distinguishing feature of non-rapid-eye-movement (NREM) sleep, an evolutionarily conserved process critical for brain function. Non-human studies posit that the claustrum, a small subcortical nucleus, coordinates slow waves. We recorded claustrum neurons in humans during sleep. In contrast to neurons from other brain regions, claustrum neurons increased their activity and tracked slow waves during NREM sleep suggesting that the claustrum plays a role in human sleep architecture.

2.
JACC Basic Transl Sci ; 6(9): 796-811, 2021.
Article in English | MEDLINE | ID: mdl-34541421

ABSTRACT

The vast majority of patients (>99%) with severe acute respiratory syndrome coronavirus 2 survive immediate infection but remain at risk for persistent and/or delayed multisystem. This review of published reports through May 31, 2021, found that manifestations of postacute sequelae of severe acute respiratory syndrome coronavirus 2 infection (PASC) affect between 33% and 98% of coronavirus disease 2019 survivors and comprise a wide range of symptoms and complications in the pulmonary, cardiovascular, neurologic, psychiatric, gastrointestinal, renal, endocrine, and musculoskeletal systems in both adult and pediatric populations. Additional complications are likely to emerge and be identified over time. Although data on PASC risk factors and vulnerable populations are scarce, evidence points to a disproportionate impact on racial/ethnic minorities, older patients, patients with preexisting conditions, and rural residents. Concerted efforts by researchers, health systems, public health agencies, payers, and governments are urgently needed to better understand and mitigate the long-term effects of PASC on individual and population health.

3.
ACS Nano ; 9(7): 7583-95, 2015 Jul 28.
Article in English | MEDLINE | ID: mdl-26168795

ABSTRACT

An integrated microfluidic/magnetophoretic methodology was developed for improving signal response time and detection limits for the chronoamperometric observation of discrete nanoparticle/electrode interactions by electrocatalytic amplification. The strategy relied on Pt-decorated iron oxide nanoparticles which exhibit both superparamagnetism and electrocatalytic activity for the oxidation of hydrazine. A wet chemical synthetic approach succeeded in the controlled growth of Pt on the surface of FeO/Fe3O4 core/shell nanocubes, resulting in highly uniform Pt-decorated iron oxide hybrid nanoparticles with good dispersibility in water. The unique mechanism of hybrid nanoparticle formation was investigated by electron microscopy and spectroscopic analysis of isolated nanoparticle intermediates and final products. Discrete hybrid nanoparticle collision events were detected in the presence of hydrazine, an electrochemical indicator probe, using a gold microband electrode integrated into a microfluidic channel. In contrast with related systems, the experimental nanoparticle/electrode collision rate correlates more closely with simple theoretical approximations, primarily due to the accuracy of the nanoparticle tracking analysis method used to quantify nanoparticle concentrations and diffusion coefficients. Further modification of the microfluidic device was made by applying a tightly focused magnetic field to the detection volume to attract the magnetic nanoprobes to the microband working electrode, thereby resulting in a 6-fold increase to the relative frequency of chronoamperometric signals corresponding to discrete nanoparticle impact events.

SELECTION OF CITATIONS
SEARCH DETAIL
...