Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 5(17): 7906-12, 2013 Sep 07.
Article in English | MEDLINE | ID: mdl-23851378

ABSTRACT

A Fe2O3@NiO core/shell nanorod array on carbon cloth was prepared with the aid of hydrothermal synthesis combined with subsequent chemical bath deposition. The resultant array structure is composed of Fe2O3 nanorods as the core and interconnected ultrathin NiO nanoflakes as the shell. As an anode material for lithium-ion batteries, the heterostructured array electrode delivers a high discharge capacity of 1047.2 mA h g(-1) after 50 cycles at 200 mA g(-1), and 783.3 mA h g(-1) at a high current density of 2000 mA g(-1). The excellent electrochemical performance is attributed to the unique 3D core/shell nanorod array architecture and a rational combination of two electrochemical active materials. Our growth approach offers a simple and effective technique for the design and synthesis of a transition metal oxide hierarchical array that is promising for high-performance electrochemical energy storage.


Subject(s)
Carbon/chemistry , Electric Power Supplies , Ferric Compounds/chemistry , Lithium/chemistry , Nanotubes/chemistry , Nickel/chemistry , Electrochemical Techniques , Electrodes
2.
Nanoscale ; 4(18): 5724-30, 2012 Sep 21.
Article in English | MEDLINE | ID: mdl-22885412

ABSTRACT

A porous NiO/RGO hybrid film is prepared by the combination of electrophoretic deposition and chemical-bath deposition. The porous hybrid film exhibits a noticeable electrochromism with reversible color changes from transparent to dark brown, and shows high coloration efficiency (76 cm(2) C(-1)), fast switching speed (7.2 s and 6.7 s) and better cycling performance compared with the porous NiO thin film. The enhancement of electrochromic performances are attributed to the reinforcement of the electrochemical activity of the RGO sheets and the greater amount of open space in the porous hybrid film which allows the electrolyte to penetrate and shorten the proton diffusion paths within the bulk of NiO.

3.
Chem Commun (Camb) ; 47(20): 5786-8, 2011 May 28.
Article in English | MEDLINE | ID: mdl-21494726

ABSTRACT

A Co(3)O(4) monolayer hollow-sphere array with mesoporous walls exhibits high pseudocapacitances of 358 F g(-1) at 2 A g(-1) and 305 F g(-1) at 40 A g(-1), as well as excellent cycling stability for application as pseudocapacitors.

SELECTION OF CITATIONS
SEARCH DETAIL
...