Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 8913, 2022 05 26.
Article in English | MEDLINE | ID: mdl-35618876

ABSTRACT

The Foziling multi-arch dam, one of the few multi-arch dams in the world, was built on the bedrock with complicated geological conditions. It has undergone several reinforcements since it was put into service in the 1950s. In this study, the dam safety is evaluated by analyzing the measured displacements and simulating stresses in the concrete. Firstly, the multiple linear stepwise regression (MLSR) is used to train and test the relationships between the loads and displacement based on the hydrostatic-temperature-time (HTT) model. Subsequently, the contributions of water level, temperature, and time to displacements are determined, and the influence characteristics of water level and temperature on displacements are interpreted. Finally, the dam stress state is evaluated by establishing a dam finite element model and simulating the stress distribution in various operating conditions. The results indicate that (1) the dam is currently in an elastic state after the last reinforcement; (2) temperature contributes the most to the displacement, and the drastic fluctuation of temperature is the disadvantage factor for multi-arch dam safety; (3) the stresses generally can meet the requirements of code; and (4) the ideas and methods of the study can provide references for the safety evaluation of other concrete dams.


Subject(s)
Models, Theoretical , Research Design , Temperature , Water
2.
Article in English | MEDLINE | ID: mdl-32106529

ABSTRACT

Dams are important water-resisting structures prone to failure, causing huge economic and environmental losses. Traditionally, a dam failure is identified using the failure mode and effect analysis. This approach analyzes both the dam failure path (the specific effect chain of the failure mode) and the damage degree, by identifying and sorting the severity caused by the dam failure path. However, this analysis can be misleading since the relationship among the failure paths is not considered. To account for this, the DEMATEL method is used to modify the evaluation result of the severity of the failure consequence, caused by the dam failure path. Based on the fuzzy mathematics and VIKOR method, a dam failure path identification method is established, and then the dam failure paths are identified and sorted for a case study: gravity dam located at the junction of Yibin County (China). According to results, the two top initial failure paths were insufficient design of upstream anti-seepage (R6) or defective water-tight screen and corrosion (R7).


Subject(s)
Equipment Failure , Water Supply , China
3.
Article in English | MEDLINE | ID: mdl-31906513

ABSTRACT

As an important feature, deformation analysis is of great significance to ensure the safety and stability of arch dam operation. In this paper, Jinping-I arch dam with a height of 305 m, which is the highest dam in the world, is taken as the research object. The deformation data representation method is analyzed, and the processing method of deformation spatiotemporal data is discussed. A deformation hybrid model is established, in which the hydraulic component is calculated by the finite element method, and other components are still calculated by the statistical model method. Since the relationship among the measuring points is not taken into account and the overall situation cannot be fully reflected in the hybrid model, a spatiotemporal hybrid model is proposed. The measured values and coordinates of all the typical points with pendulums of the arch dam are included in one spatiotemporal hybrid model, which is feasible, convenient, and accurate. The model can predict the deformation of any position on the arch dam. This is of great significance for real-time monitoring of deformation and stability of Jinping-I arch dam and ensuring its operation safety.


Subject(s)
Algorithms , Materials Testing/methods , Models, Theoretical , Safety , Structure Collapse/prevention & control , Humans , Spatio-Temporal Analysis , Water
4.
PLoS One ; 13(7): e0200679, 2018.
Article in English | MEDLINE | ID: mdl-30016374

ABSTRACT

Monitoring indexes are significant for real-time monitoring of dam performance in ensuring safe and normal operation. Traditional methods for establishing monitoring indexes are mostly focused on single point displacements, and rational monitoring indexes based on multi-point displacements are rare. This study establishes monitoring indexes based on correlation and discreteness of multi-point displacements. The proposed method is applicable when several monitoring points show strong correlation. In this study, principal component analysis (PCA) was introduced for preprocessing the observations of multi-point displacements. Correlation and discreteness of multi-point displacements were extracted and constructed. The correlation and discreteness parts described the integral and local variance of the displacement field. On this basis, the annual maximum values of the correlation and discreteness parts were selected and their probability density functions (PDF) could be generated by employing the principle of maximum entropy. PDF was constructed using maximum entropy method and was least subjective because it barely provided the moment information of the observations. The multi-point monitoring indexes were then determined by the typical low probability method based on the obtained PDFs. Finally, the proposed method was analyzed using a practical engineering and was verified in terms of its feasibility.


Subject(s)
Construction Industry , Models, Theoretical
5.
Article in English | MEDLINE | ID: mdl-29710824

ABSTRACT

Earth-rock dams make up a large proportion of the dams in China, and their failures can induce great risks. In this paper, the risks associated with earth-rock dam failure are analyzed from two aspects: the probability of a dam failure and the resulting life loss. An event tree analysis method based on fuzzy set theory is proposed to calculate the dam failure probability. The life loss associated with dam failure is summarized and refined to be suitable for Chinese dams from previous studies. The proposed method and model are applied to one reservoir dam in Jiangxi province. Both engineering and non-engineering measures are proposed to reduce the risk. The risk analysis of the dam failure has essential significance for reducing dam failure probability and improving dam risk management level.


Subject(s)
Engineering/standards , Equipment Failure , Fuzzy Logic , Rivers , China , Humans , Hydrodynamics
6.
Springerplus ; 5(1): 1968, 2016.
Article in English | MEDLINE | ID: mdl-27917344

ABSTRACT

Warning indicators of the dam body's temperature are required for the real-time monitoring of the service conditions of concrete dams to ensure safety and normal operations. Warnings theories are traditionally targeted at a single point which have limitations, and the scientific warning theories on global behavior of the temperature field are non-existent. In this paper, first, in 3D space, the behavior of temperature field has regional dissimilarity. Through the Ward spatial clustering method, the temperature field was divided into regions. Second, the degree of order and degree of disorder of the temperature monitoring points were defined by the probability method. Third, the weight values of monitoring points of each regions were explored via projection pursuit. Forth, a temperature entropy expression that can describe degree of order of the spatial temperature field in concrete dams was established. Fifth, the early-warning index of temperature entropy was set up according to the calculated sequential value of temperature entropy. Finally, project cases verified the feasibility of the proposed theories. The early-warning index of temperature entropy is conducive to the improvement of early-warning ability and safety management levels during the operation of high concrete dams.

7.
Springerplus ; 5(1): 898, 2016.
Article in English | MEDLINE | ID: mdl-27386345

ABSTRACT

This study determines dam deformation similarity indexes based on an analysis of deformation zoning features and panel data clustering theory, with comprehensive consideration to the actual deformation law of super-high arch dams and the spatial-temporal features of dam deformation. Measurement methods of these indexes are studied. Based on the established deformation similarity criteria, the principle used to determine the number of dam deformation zones is constructed through entropy weight method. This study proposes the deformation zoning method for super-high arch dams and the implementation steps, analyzes the effect of special influencing factors of different dam zones on the deformation, introduces dummy variables that represent the special effect of dam deformation, and establishes a variable-intercept panel model for deformation zoning of super-high arch dams. Based on different patterns of the special effect in the variable-intercept panel model, two panel analysis models were established to monitor fixed and random effects of dam deformation. Hausman test method of model selection and model effectiveness assessment method are discussed. Finally, the effectiveness of established models is verified through a case study.

SELECTION OF CITATIONS
SEARCH DETAIL
...