Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Bioconjug Chem ; 24(10): 1750-9, 2013 Oct 16.
Article in English | MEDLINE | ID: mdl-24011174

ABSTRACT

Clostridial neurotoxins reversibly block neuronal communication for weeks and months. While these proteolytic neurotoxins hold great promise for clinical applications and the investigation of brain function, their paralytic activity at neuromuscular junctions is a stumbling block. To redirect the clostridial activity to neuronal populations other than motor neurons, we used a new self-assembling method to combine the botulinum type A protease with the tetanus binding domain, which natively targets central neurons. The two parts were produced separately and then assembled in a site-specific way using a newly introduced 'protein stapling' technology. Atomic force microscopy imaging revealed dumbbell shaped particles which measure ∼23 nm. The stapled chimera inhibited mechanical hypersensitivity in a rat model of inflammatory pain without causing either flaccid or spastic paralysis. Moreover, the synthetic clostridial molecule was able to block neuronal activity in a defined area of visual cortex. Overall, we provide the first evidence that the protein stapling technology allows assembly of distinct proteins yielding new biomedical properties.


Subject(s)
Botulinum Toxins, Type A/metabolism , Brain/drug effects , Pain Threshold/drug effects , Recombinant Fusion Proteins/metabolism , Tetanus Toxin/metabolism , Animals , Botulinum Toxins, Type A/administration & dosage , Brain/physiology , Cells, Cultured , Clostridium botulinum/metabolism , Clostridium tetani/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Models, Molecular , Neurons/cytology , Neurons/drug effects , Rats , Recombinant Fusion Proteins/administration & dosage , Tetanus Toxin/administration & dosage
2.
J Neurochem ; 126(2): 223-33, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23638840

ABSTRACT

Precise cellular targeting of macromolecular cargos has important biotechnological and medical implications. Using a recently established 'protein stapling' method, we linked the proteolytic domain of botulinum neurotoxin type A (BoNT/A) to a selection of ligands to target neuroendocrine tumor cells. The botulinum proteolytic domain was chosen because of its well-known potency to block the release of neurotransmitters and hormones. Among nine tested stapled ligands, the epidermal growth factor was able to deliver the botulinum enzyme into pheochromocytoma PC12 and insulinoma Min6 cells; ciliary neurotrophic factor was effective on neuroblastoma SH-SY5Y and Neuro2A cells, whereas corticotropin-releasing hormone was active on pituitary AtT-20 cells and the two neuroblastoma cell lines. In neuronal cultures, the epidermal growth factor- and ciliary neurotrophic factor-directed botulinum enzyme targeted distinct subsets of neurons whereas the whole native neurotoxin targeted the cortical neurons indiscriminately. At nanomolar concentrations, the retargeted botulinum molecules were able to inhibit stimulated release of hormones from tested cell lines suggesting their application for treatments of neuroendocrine disorders.


Subject(s)
Botulinum Toxins, Type A/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Neurons/metabolism , Neuropeptides/metabolism , Animals , Botulinum Toxins, Type A/chemistry , Botulinum Toxins, Type A/pharmacology , Cell Line , Humans , Intercellular Signaling Peptides and Proteins/chemistry , Mice , Microtubule-Associated Proteins/metabolism , Neuroblastoma/pathology , Neurons/drug effects , Neuropeptides/chemistry , Norepinephrine/metabolism , Potassium Chloride/pharmacology , Protein Structure, Tertiary/drug effects , Rats , Recombinant Fusion Proteins/metabolism , Synaptosomal-Associated Protein 25/metabolism , Tritium/metabolism
3.
Bioconjug Chem ; 23(3): 479-84, 2012 Mar 21.
Article in English | MEDLINE | ID: mdl-22299630

ABSTRACT

Combining proteins or their defined domains offers new enhanced functions. Conventionally, two proteins are either fused into a single polypeptide chain by recombinant means or chemically cross-linked. However, these strategies can have drawbacks such as poor expression (recombinant fusions) or aggregation and inactivation (chemical cross-linking), especially in the case of large multifunctional proteins. We developed a new linking method which allows site-oriented, noncovalent, yet irreversible stapling of modified proteins at neutral pH and ambient temperature. This method is based on two distinct polypeptide linkers which self-assemble in the presence of a specific peptide staple allowing on-demand and irreversible combination of protein domains. Here we show that linkers can either be expressed or be chemically conjugated to proteins of interest, depending on the source of the proteins. We also show that the peptide staple can be shortened to 24 amino acids still permitting an irreversible combination of functional proteins. The versatility of this modular technique is demonstrated by stapling a variety of proteins either in solution or to surfaces.


Subject(s)
Peptides/chemistry , Proteins/chemistry , Amino Acid Sequence , Hydrogen-Ion Concentration , Molecular Sequence Data , Temperature
4.
Br J Pharmacol ; 165(4): 787-801, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21797839

ABSTRACT

The thermo-transient receptor potentials (TRPs), a recently discovered family of ion channels activated by temperature, are expressed in primary sensory nerve terminals where they provide information about thermal changes in the environment. Six thermo-TRPs have been characterised to date: TRP vanilloid (TRPV) 1 and 2 are activated by painful levels of heat, TRPV3 and 4 respond to non-painful warmth, TRP melastatin 8 is activated by non-painful cool temperatures, while TRP ankyrin (TRPA) 1 is activated by painful cold. The thermal thresholds of many thermo-TRPs are known to be modulated by extracellular mediators, released by tissue damage or inflammation, such as bradykinin, PG and growth factors. There have been intensive efforts recently to develop antagonists of thermo-TRP channels, particularly of the noxious thermal sensors TRPV1 and TRPA1. Blockers of these channels are likely to have therapeutic uses as novel analgesics, but may also cause unacceptable side effects. Controlling the modulation of thermo-TRPs by inflammatory mediators may be a useful alternative strategy in developing novel analgesics.


Subject(s)
Transient Receptor Potential Channels/physiology , Animals , Humans , Intercellular Signaling Peptides and Proteins/physiology , Pain/physiopathology , Receptors, G-Protein-Coupled/physiology , Temperature , Transient Receptor Potential Channels/agonists , Transient Receptor Potential Channels/antagonists & inhibitors
5.
Expert Rev Clin Pharmacol ; 3(5): 687-704, 2010 Sep.
Article in English | MEDLINE | ID: mdl-22111750

ABSTRACT

The thermo transient receptor potential (TRP) ion channels, a recently discovered family of ion channels activated by temperature, are expressed in primary sensory nerve terminals, where they provide information regarding thermal changes in the environment. Six thermo-TRPs have been characterized to date: TRPV1-4, which respond to different levels of warmth and heat, and TRPM8 and TRPA1, which respond to cool temperatures. We review the current state of knowledge of thermo-TRPs, and of the modulation of their thermal thresholds by a range of inflammatory mediators. Blockers of these channels are likely to have therapeutic uses as novel analgesics but may also cause unacceptable side effects. Controlling the modulation of thermo-TRPs by inflammatory mediators may be a useful alternative strategy in developing novel analgesics.

6.
PLoS Biol ; 6(11): e284, 2008 Nov 18.
Article in English | MEDLINE | ID: mdl-19018662

ABSTRACT

Neurotrophic interactions occur in Drosophila, but to date, no neurotrophic factor had been found. Neurotrophins are the main vertebrate secreted signalling molecules that link nervous system structure and function: they regulate neuronal survival, targeting, synaptic plasticity, memory and cognition. We have identified a neurotrophic factor in flies, Drosophila Neurotrophin (DNT1), structurally related to all known neurotrophins and highly conserved in insects. By investigating with genetics the consequences of removing DNT1 or adding it in excess, we show that DNT1 maintains neuronal survival, as more neurons die in DNT1 mutants and expression of DNT1 rescues naturally occurring cell death, and it enables targeting by motor neurons. We show that Spätzle and a further fly neurotrophin superfamily member, DNT2, also have neurotrophic functions in flies. Our findings imply that most likely a neurotrophin was present in the common ancestor of all bilateral organisms, giving rise to invertebrate and vertebrate neurotrophins through gene or whole-genome duplications. This work provides a missing link between aspects of neuronal function in flies and vertebrates, and it opens the opportunity to use Drosophila to investigate further aspects of neurotrophin function and to model related diseases.


Subject(s)
Drosophila Proteins/physiology , Drosophila/embryology , Nerve Growth Factors/physiology , Nervous System/embryology , Neurons/metabolism , Animals , Axons , Base Sequence , Cell Death , Conserved Sequence , Drosophila/genetics , Drosophila Proteins/chemistry , Drosophila Proteins/genetics , Gene Expression , Humans , Locomotion , Nerve Growth Factors/chemistry , Nerve Growth Factors/genetics , Neurons/physiology , Sequence Analysis, Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...