Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Res ; 32(7): 609-620, 2022 07.
Article in English | MEDLINE | ID: mdl-35641567

ABSTRACT

The Omicron BA.2 variant has become a dominant infective strain worldwide. Receptor binding studies show that the Omicron BA.2 spike trimer exhibits 11-fold and 2-fold higher potency in binding to human ACE2 than the spike trimer from the wildtype (WT) and Omicron BA.1 strains. The structure of the BA.2 spike trimer complexed with human ACE2 reveals that all three receptor-binding domains (RBDs) in the spike trimer are in open conformation, ready for ACE2 binding, thus providing a basis for the increased infectivity of the BA.2 strain. JMB2002, a therapeutic antibody that was shown to efficiently inhibit Omicron BA.1, also shows potent neutralization activities against Omicron BA.2. In addition, both BA.1 and BA.2 spike trimers are able to bind to mouse ACE2 with high potency. In contrast, the WT spike trimer binds well to cat ACE2 but not to mouse ACE2. The structures of both BA.1 and BA.2 spike trimer bound to mouse ACE2 reveal the basis for their high affinity interactions. Together, these results suggest a possible evolution pathway for Omicron BA.1 and BA.2 variants via a human-cat-mouse-human circle, which could have important implications in establishing an effective strategy for combating SARS-CoV-2 viral infections.


Subject(s)
COVID-19 , Immune Evasion , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Neutralizing , Mice , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics
2.
Science ; 375(6584): 1048-1053, 2022 03 04.
Article in English | MEDLINE | ID: mdl-35133176

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant has become the dominant infective strain. We report the structures of the Omicron spike trimer on its own and in complex with angiotensin-converting enzyme 2 (ACE2) or an anti-Omicron antibody. Most Omicron mutations are located on the surface of the spike protein and change binding epitopes to many current antibodies. In the ACE2-binding site, compensating mutations strengthen receptor binding domain (RBD) binding to ACE2. Both the RBD and the apo form of the Omicron spike trimer are thermodynamically unstable. An unusual RBD-RBD interaction in the ACE2-spike complex supports the open conformation and further reinforces ACE2 binding to the spike trimer. A broad-spectrum therapeutic antibody, JMB2002, which has completed a phase 1 clinical trial, maintains neutralizing activity against Omicron. JMB2002 binds to RBD differently from other characterized antibodies and inhibits ACE2 binding.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , Antibodies, Neutralizing/chemistry , Antibodies, Viral/chemistry , SARS-CoV-2/chemistry , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/metabolism , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/immunology , Antibodies, Viral/metabolism , Binding Sites , Cryoelectron Microscopy , Epitopes , Humans , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fab Fragments/metabolism , Models, Molecular , Mutation , Protein Binding , Protein Conformation , Protein Domains , Protein Interaction Domains and Motifs , Protein Multimerization , Protein Subunits/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Thermodynamics
3.
MAbs ; 13(1): 1930636, 2021.
Article in English | MEDLINE | ID: mdl-34097570

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which causes coronavirus disease-2019 (COVID-19), interacts with the host cell receptor angiotensin-converting enzyme 2 (hACE2) via its spike 1 protein during infection. After the virus sequence was published, we identified two potent antibodies against the SARS-CoV-2 receptor binding domain (RBD) from antibody libraries using a phage-to-yeast (PtY) display platform in only 10 days. Our lead antibody JMB2002, now in a Phase 1 clinical trial (ChiCTR2100042150), showed broad-spectrum in vitro blocking activity against hACE2 binding to the RBD of multiple SARS-CoV-2 variants, including B.1.351 that was reportedly much more resistant to neutralization by convalescent plasma, vaccine sera and some clinical-stage neutralizing antibodies. Furthermore, JMB2002 has demonstrated complete prophylactic and potent therapeutic efficacy in a rhesus macaque disease model. Prophylactic and therapeutic countermeasure intervention of SARS-CoV-2 using JMB2002 would likely slow down the transmission of currently emerged SARS-CoV-2 variants and result in more efficient control of the COVID-19 pandemic.


Subject(s)
Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Antibodies, Neutralizing/pharmacology , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , COVID-19/prevention & control , SARS-CoV-2/drug effects , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Animals , Antibody Specificity , Binding Sites, Antibody , CHO Cells , COVID-19/immunology , COVID-19/metabolism , COVID-19/virology , Chlorocebus aethiops , Cricetulus , Disease Models, Animal , Epitopes , Macaca mulatta , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Vero Cells
4.
Front Immunol ; 11: 596908, 2020.
Article in English | MEDLINE | ID: mdl-33329588

ABSTRACT

The critical role of IgE in allergic diseases is well-documented and clinically proven. Omalizumab, a humanized anti-IgE antibody, was the first approved antibody for the treatment of allergic diseases. Nevertheless, omalizumab still has some limitations, such as product instability and dosage restriction in clinical application. In this study, we attempted to develop an omalizumab biobetter antibody with the potential to overcome its limitations. We removed two aspartic acid isomerization hotspots in CDRs of omalizumab to improve antibody candidate's stability. Meanwhile, several murine amino acids in the framework region of omalizumab were replaced with human source to reduce the potential immunogenicity. Yeast display technology was then applied to screen antibody candidates with high binding affinity to IgE. Moreover, YTE mutation in Fc fragment was introduced into the candidates for extending their serum half-life. A lead candidate, AB1904Am15, was screened out, which showed desired biophysical properties and improved stability, high binding affinity and elevated potency in vitro, prolonged half-life in human FcRn transgenic mouse, and enhanced in vivo efficacy in cynomolgus monkey asthma model. Overall, our study developed a biobetter antibody of omalizumab, AB1904Am15, which has the potential to show improved clinical benefit in the treatment of allergic diseases.


Subject(s)
Anti-Allergic Agents/pharmacology , Anti-Allergic Agents/therapeutic use , Antibodies, Anti-Idiotypic/pharmacology , Antibodies, Anti-Idiotypic/therapeutic use , Hypersensitivity/drug therapy , Omalizumab/pharmacology , Omalizumab/therapeutic use , Anti-Allergic Agents/chemistry , Antibodies, Anti-Idiotypic/chemistry , Antibody Affinity/immunology , Biophysical Phenomena , Chromatography, Liquid , Drug Monitoring , Drug Stability , Flow Cytometry , Humans , Hypersensitivity/diagnosis , Hypersensitivity/immunology , Immunoglobulin E/blood , Immunoglobulin E/immunology , Omalizumab/chemistry , Protein Binding , Tandem Mass Spectrometry , Treatment Outcome
5.
J Bioenerg Biomembr ; 49(5): 347-355, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28643238

ABSTRACT

Regulator of the H+-ATPase of the vacuolar and endosomal membranes (RAVE) is essential for the reversible assembly of H+-ATPase. RAVE primarily consists of three subunits: Rav1p, Rav2p and Skp1p. To characterize these subunits, in this study, four strains derived from Saccharomyces cerevisiae BY4742 were constructed with a FLAG tag on the Rav1p and Rav2p subunits. Then, the corresponding RAVE containing complex was isolated by affinity purification. Western blot and MALDI-TOF mass spectrometry analyses showed that the RAVE complex contains not only the known V1-ATPase subunits (Vma1p and Vma2p) but also a newly found Leu1p that interacts with the RAVE subunit. Furthermore, we constructed rav1-/rav2-/vma2-/leu1-deficient recombinants by fusion PCR and homologous recombination and demonstrated that leu1 is indispensable in adjusting the microbial cell to adverse environments and that the function is similar to that of rav1/rav2 but significantly differs from that of vma2. Leu1p probably plays an important role in RAVE regulation of V-ATPase activity in conjunction with RAVE.


Subject(s)
Endosomes/ultrastructure , Intracellular Membranes/enzymology , Vacuolar Proton-Translocating ATPases/metabolism , Vacuoles/ultrastructure , Endosomes/enzymology , Protein Subunits , Saccharomyces cerevisiae Proteins/physiology , Vacuoles/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...