Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
FASEB J ; 38(13): e23762, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38923643

ABSTRACT

Exosomes play significant roles in the communications between tumor cells and tumor microenvironment. However, the specific mechanisms by which exosomes modulate tumor development under hypoxia in pancreatic neuroendocrine tumors (pNETs) are not well understood. This study aims to investigate these mechanisms and made several important discoveries. We found that hypoxic exosomes derived from pNETs cells can activate tumor-associated macrophages (TAM) to the M2 phenotype, in turn, the M2-polarized TAM, facilitate the migration and invasion of pNETs cells. Further investigation revealed that CEACAM5, a protein highly expressed in hypoxic pNETs cells, is enriched in hypoxic pNETs cell-derived exosomes. Hypoxic exosomal CEACAM5 was observed to induce M2 polarization of TAM through activation of the MAPK signaling pathway. Coculturing pNETs cells with TAM or treated with hypoxic exosomes enhanced the metastatic capacity of pNETs cells. In conclusion, these findings suggest that pNETs cells generate CEACAM5-rich exosomes in a hypoxic microenvironment, which in turn polarize TAM promote malignant invasion of pNETs cells. Targeting exosomal CEACAM5 could potentially serve as a diagnostic and therapeutic strategy for pNETs.


Subject(s)
Antigens, CD , Exosomes , GPI-Linked Proteins , Matrix Metalloproteinase 9 , Neuroendocrine Tumors , Pancreatic Neoplasms , Tumor Microenvironment , Tumor-Associated Macrophages , Exosomes/metabolism , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Humans , Animals , Neuroendocrine Tumors/metabolism , Neuroendocrine Tumors/pathology , Matrix Metalloproteinase 9/metabolism , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/pathology , Mice , Cell Line, Tumor , Antigens, CD/metabolism , GPI-Linked Proteins/metabolism , Cell Adhesion Molecules/metabolism , Cell Movement , Neoplasm Metastasis , Mice, Nude , Hypoxia/metabolism , Cell Hypoxia/physiology , Carcinoembryonic Antigen
2.
Int J Biol Sci ; 20(8): 3201-3218, 2024.
Article in English | MEDLINE | ID: mdl-38904015

ABSTRACT

Tumor-associated macrophages (TAMs) represent a predominant cellular component within the tumor microenvironment (TME) of pancreatic neuroendocrine neoplasms (pNENs). There is a growing body of evidence highlighting the critical role of exosomes in facilitating communication between tumor cells and TAMs, thereby contributing to the establishment of the premetastatic niche. Nonetheless, the specific mechanisms through which exosomes derived from tumor cells influence macrophage polarization under hypoxic conditions in pNENs, and the manner in which these interactions support cancer metastasis, remain largely unexplored. Recognizing the capacity of exosomes to transfer miRNAs that can modify cellular behaviors, our research identified a significant overexpression of miR-4488 in exosomes derived from hypoxic pNEN cells. Furthermore, we observed that macrophages that absorbed circulating exosomal miR-4488 underwent M2-like polarization. Our investigations revealed that miR-4488 promotes M2-like polarization by directly targeting and suppressing RTN3 in macrophages. This suppression of RTN3 enhances fatty acid oxidation and activates the PI3K/AKT/mTOR signaling pathway through the interaction and downregulation of FABP5. Additionally, M2 polarized macrophages contribute to the formation of the premetastatic niche and advance pNENs metastasis by releasing MMP2, thereby establishing a positive feedback loop involving miR-4488, RTN3, FABP5, and MMP2 in pNEN cells. Together, these findings shed light on the role of exosomal miRNAs from hypoxic pNEN cells in mediating interactions between pNEN cells and intrahepatic macrophages, suggesting that miR-4488 holds potential as a valuable biomarker and therapeutic target for pNENs.


Subject(s)
Exosomes , Liver Neoplasms , Macrophages , MicroRNAs , Neuroendocrine Tumors , Pancreatic Neoplasms , MicroRNAs/metabolism , MicroRNAs/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Exosomes/metabolism , Humans , Animals , Mice , Neuroendocrine Tumors/metabolism , Neuroendocrine Tumors/pathology , Neuroendocrine Tumors/genetics , Macrophages/metabolism , Liver Neoplasms/metabolism , Liver Neoplasms/secondary , Liver Neoplasms/genetics , Cell Line, Tumor , Fatty Acids/metabolism , Oxidation-Reduction , Tumor Microenvironment , Fatty Acid-Binding Proteins/metabolism , Fatty Acid-Binding Proteins/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Mice, Nude , Signal Transduction
3.
Cell Mol Life Sci ; 81(1): 50, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38252148

ABSTRACT

Pancreatic neuroendocrine neoplasms (PanNENs) are a group of highly heterogeneous neoplasms originating from the endocrine islet cells of the pancreas with characteristic neuroendocrine differentiation, more than 60% of which represent metastases when diagnosis, causing major tumor-related death. Metabolic alterations have been recognized as one of the hallmarks of tumor metastasis, providing attractive therapeutic targets. However, little is known about the molecular mechanism of metabolic changes regulating PanNEN progression. In this study, we first identified methylmalonic acid (MMA) as an oncometabolite for PanNEN progression, based on serum metabolomics of metastatic PanNEN compared with non-metastatic PanNEN patients. One of the key findings was the potentially novel mechanism of epithelial-mesenchymal transition (EMT) triggered by MMA. Inhibin ßA (INHBA) was characterized as a key regulator of MMA-induced PanNEN progression according to transcriptomic analysis, which has been validated in vitro and in vivo. Mechanistically, INHBA was activated by FOXA2, a neuroendocrine (NE) specific transcription factor, which was initiated during MMA-induced progression. In addition, MMA-induced INHBA upregulation activated downstream MITF to regulate EMT-related genes in PanNEN cells. Collectively, these data suggest that activation of INHBA via FOXA2 promotes MITF-mediated EMT during MMA inducing PanNEN progression, which puts forward a novel therapeutic target for PanNENs.


Subject(s)
Hepatocyte Nuclear Factor 3-beta , Inhibin-beta Subunits , Methylmalonic Acid , Pancreatic Neoplasms , Humans , Hepatocyte Nuclear Factor 3-beta/genetics , Inhibin-beta Subunits/genetics , Pancreas , Pancreatic Neoplasms/genetics , Transcriptional Activation
4.
J Transl Med ; 22(1): 93, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38263056

ABSTRACT

BACKGROUND: Pancreatic neuroendocrine neoplasms (pNENs) are relatively rare. Hypoxia and lipid metabolism-related gene acetyl-CoA synthetase 2 (ACSS2) is involved in tumor progression, but its role in pNENs is not revealed. This study showed that hypoxia can upregulate ACSS2, which plays an important role in the occurrence and development of pNENs through lipid metabolism reprogramming. However, the precise role and mechanisms of ACSS2 in pNENs remain unknown. METHODS: mRNA and protein levels of ACSS2 and 3-hydroxy-3-methylglutaryl-CoA synthase1 (HMGCS1) were detected using quantitative real-time PCR (qRT-PCR) and Western blotting (WB). The effects of ACSS2 and HMGCS1 on cell proliferation were examined using CCK-8, colony formation assay and EdU assay, and their effects on cell migration and invasion were examined using transwell assay. The interaction between ACSS2 and HMGCS1 was verified by Co-immunoprecipitation (Co-IP) experiments, and the functions of ACSS2 and HMGCS1 in vivo were determined by nude mouse xenografts. RESULTS: We demonstrated that hypoxia can upregulate ACSS2 while hypoxia also promoted the progression of pNENs. ACSS2 was significantly upregulated in pNENs, and overexpression of ACSS2 promoted the progression of pNENs and knockdown of ACSS2 and ACSS2 inhibitor (ACSS2i) treatment inhibited the progression of pNENs. ACSS2 regulated lipid reprogramming and the PI3K/AKT/mTOR pathway in pNENs, and ACSS2 regulated lipid metabolism reprogramming through the PI3K/AKT/mTOR pathway. Co-IP experiments indicated that HMGCS1 interacted with ACSS2 in pNENs. Overexpression of HMGCS1 can reverse the enhanced lipid metabolism reprogramming and tumor-promoting effects of knockdown of ACSS2. Moreover, overexpression of HMGCS1 reversed the inhibitory effect of knockdown of ACSS2 on the PI3K/AKT/mTOR pathway. CONCLUSION: Our study revealed that hypoxia can upregulate the lipid metabolism-related gene ACSS2, which plays a tumorigenic effect by regulating lipid metabolism through activating the PI3K/AKT/mTOR pathway. In addition, HMGCS1 can reverse the oncogenic effects of ACSS2, providing a new option for therapeutic strategy.


Subject(s)
Lipid Metabolism , Pancreatic Neoplasms , Humans , Animals , Mice , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Metabolic Reprogramming , TOR Serine-Threonine Kinases , Lipids , Acetate-CoA Ligase , Hydroxymethylglutaryl-CoA Synthase
5.
Exp Clin Endocrinol Diabetes ; 132(2): 98-106, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38096919

ABSTRACT

BACKGROUND: Pancreatic neuroendocrine neoplasms (p-NENs) are relatively rare and highly heterogeneous. Dyslipidemia may be related to the risk of developing p-NENs, although dyslipidemia in patients with p-NENs is rarely reported. In this study, the clinical characteristics of p-NENs patients with different lipid levels and their prognostic value in p-NENs patients were evaluated. METHODS: Patients (n=211) with p-NENs hospitalized at Jiangsu Neuroendocrine Tumor Centre of Jiangsu Province Hospital from December 2018 to December 2022 were enrolled. Clinical data related to p-NENs were collected. Based on the EGA database, the related lipoprotein, low-density lipoprotein receptor (LDLR) and high-density lipoprotein binding protein (HDLBP) mRNA in p-NENs and paratumoral tissues and the follow-up information of p-NENs were evaluated. RESULTS: A total of 175 p-NENs patients ultimately met the inclusion criteria. The ki67 index was higher in p-NENs patients with elevated lipid with the proportion of≥5, and in those with AJCC stage III and stage IV than p-NENs patients with low-level lipid. In p-NENs patients, the expression of HDLBP mRNA was downregulated in p-NENs tissues compared to the paratumoral tissues. Survival analysis showed that serum lipids had no effect on the prognosis of p-NENs; however, high LDLR level p-NENs were at the risk of poor survival. CONCLUSION: Serum lipid level in p-NENs can affect the grading and staging, but the correlation with the prognosis of p-NENs is not significant. However, dyslipidemia may be a potential predictor of p-NENs.


Subject(s)
Dyslipidemias , Neuroendocrine Tumors , Pancreatic Neoplasms , Humans , Retrospective Studies , Neuroendocrine Tumors/diagnosis , Prognosis , China , RNA, Messenger , Lipids
6.
J Transl Med ; 21(1): 741, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37858219

ABSTRACT

The process of post-transcriptional regulation has been recognized to be significantly impacted by the presence of N6-methyladenosine (m6A) modification. As an m6A demethylase, ALKBH5 has been shown to contribute to the progression of different cancers by increasing expression of several oncogenes. Hence, a better understanding of the key targets of ALKBH5 in cancer cells could potentially lead to the development of new therapeutic targets. However, the specific role of ALKBH5 in pancreatic neuroendocrine neoplasms (pNENs) remains largely unknown. Here, we demonstrated that ALKBH5 was up-regulated in pNENs and played a critical role in tumor growth and lipid metabolism. Mechanistically, ALKBH5 over-expression was found to increase the expression of FABP5 in an m6A-IGF2BP2 dependent manner, leading to disorders in lipid metabolism. Additionally, ALKBH5 was found to activate PI3K/Akt/mTOR signaling pathway, resulting in enhanced lipid metabolism and proliferation abilities. In conclusion, our study uncovers the ALKBH5/IGF2BP2/FABP5/mTOR axis as a mechanism for aberrant m6A modification in lipid metabolism and highlights a new molecular basis for the development of therapeutic strategies for pNENs treatment.


Subject(s)
Lipid Metabolism , Pancreatic Neoplasms , Humans , Lipid Metabolism/genetics , Phosphatidylinositol 3-Kinases , Pancreatic Neoplasms/genetics , Adenosine , TOR Serine-Threonine Kinases , Fatty Acid-Binding Proteins/genetics , RNA-Binding Proteins , AlkB Homolog 5, RNA Demethylase/genetics
7.
Commun Biol ; 6(1): 714, 2023 07 12.
Article in English | MEDLINE | ID: mdl-37438449

ABSTRACT

Increasing evidence indicates that long non-coding RNA (lncRNA) is one of the most important RNA regulators in the pathogenesis of neuroblastoma (NB). Here, we found that FAM201A was low expressed in NB and a variety of gain and loss of function studies elucidated the anti-tumor effects of FAM201A on the regulation of proliferation, migration and invasion of NB cells. Intriguingly, we identified the ability of FAM201A to encode the tumor-suppressing protein, NBASP, which interacted with FABP5 and negatively regulated its expression. In vivo assays also revealed NBASP repressed NB growth via inactivating MAPK pathway mediated by FABP5. In conclusion, our findings demonstrated that NBASP encoded by FAM201A played a tumor-suppressor role in NB carcinogenesis via down-regulating FABP5 to inactivate the MAPK pathway. These results extended our understanding of the relationship of lncRNA-encoded functional peptides and plasticity of tumor progression.


Subject(s)
Fatty Acid-Binding Proteins , Neuroblastoma , RNA, Long Noncoding , Humans , Biological Assay , Carcinogenesis , Fatty Acid-Binding Proteins/genetics , Neoplasm Proteins , Neuroblastoma/genetics , RNA, Long Noncoding/genetics
8.
J Cancer ; 14(8): 1458-1469, 2023.
Article in English | MEDLINE | ID: mdl-37283794

ABSTRACT

Background: Orlistat is an antiobesity drug approved by the US Food and Drug Administration (FDA) with potential antitumor activity against a few malignant tumors, however, whether orlistat affects the progression of pancreatic neuroendocrine tumors (pNETs) remains unknown. Methods: Protein and mRNA levels of FASN were measured using western blotting (WB) and qRT-PCR. The effects of FASN and orlistat on cell proliferation were examined using CCK-8, colony formation, and EdU assays. The effects of FASN and orlistat on cell migration and invasion were tested using a transwell assay. A lipid peroxidation assay was used to explore the effects of orlistat on ferroptosis. The function of orlistat in vivo was determined by xenograft in nude mice. Results: Based on the results of WB and qRT-PCR, FASN was significantly up-regulated in pNET cell lines and public database indicated increased expression of FASN correlated with poor prognosis for patients with pNET. CCK-8, colony formation, and EdU assays showed that knockdown of FASN or treatment with orlistat suppressed the proliferation of pNET cells. The transwell assay indicated that the knockdown of FASN or treatment with orlistat inhibited the migration and invasion of pNET cells. WB and the peroxidation assay showed that orlistat induced ferroptosis in pNET cells. Moreover, orlistat was also found to inhibit the MAPK pathway in pNETs. Furthermore, orlistat showed excellent anti-tumor effects in xenografts in nude mice. Conclusion: Altogether, our study demonstrates that orlistat inhibits the progression of pNETs by inducing ferroptosis mediated by inactivation of the MAPK signaling pathway. Therefore, orlistat is a promising candidate for the treatment of pNETs.

9.
Cancer Sci ; 114(9): 3553-3567, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37302809

ABSTRACT

Pancreatic neuroendocrine neoplasms (pNENs) are among the most frequently occurring neuroendocrine neoplasms (NENs) and require targeted therapy. High levels of fatty acid binding protein 5 (FABP5) are involved in tumor progression, but its role in pNENs remains unclear. We investigated the mRNA and protein levels of FABP5 in pNEN tissues and cell lines and found them to be upregulated. We evaluated changes in cell proliferation using CCK-8, colony formation, and 5-ethynyl-2'-deoxyuridine assays and examined the effects on cell migration and invasion using transwell assays. We found that knockdown of FABP5 suppressed the proliferation, migration, and invasion of pNEN cell lines, while overexpression of FABP5 had the opposite effect. Co-immunoprecipitation experiments were performed to clarify the interaction between FABP5 and fatty acid synthase (FASN). We further showed that FABP5 regulates the expression of FASN via the ubiquitin proteasome pathway and both proteins facilitate the progression of pNENs. Our study demonstrated that FABP5 acts as an oncogene by promoting lipid droplet deposition and activating the WNT/ß-catenin signaling pathway. Moreover, the carcinogenic effects of FABP5 can be reversed by orlistat, providing a novel therapeutic intervention option.


Subject(s)
Neuroendocrine Tumors , Pancreatic Neoplasms , Humans , Wnt Signaling Pathway , Cell Line, Tumor , Lipid Metabolism/genetics , beta Catenin/genetics , beta Catenin/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Neuroendocrine Tumors/genetics , Fatty Acid Synthases/genetics , Fatty Acid Synthases/metabolism , Fatty Acid Synthases/pharmacology , Cell Proliferation/genetics , Cell Movement/genetics , Gene Expression Regulation, Neoplastic , Fatty Acid-Binding Proteins/genetics , Fatty Acid-Binding Proteins/metabolism , Fatty Acid-Binding Proteins/pharmacology , Fatty Acid Synthase, Type I/genetics , Fatty Acid Synthase, Type I/metabolism
10.
Int J Biol Sci ; 19(6): 1748-1763, 2023.
Article in English | MEDLINE | ID: mdl-37063421

ABSTRACT

N6-methyladenosine (m6A) methylation, the most prevalent and abundant RNA modification in eukaryotes, has recently become a hot research topic. Several studies have indicated that m6A modification is dysregulated during the progression of multiple diseases, especially in cancer development. Programmed cell death (PCD) is an active and orderly method of cell death in the development of organisms, including apoptosis, autophagy, pyroptosis, ferroptosis, and necroptosis. As the study of PCD has become increasingly profound, accumulating evidence has revealed the mutual regulation of m6A modification and PCD, and their interaction can further influence the sensitivity of cancer treatment. In this review, we summarize the recent advances in m6A modification and PCD in terms of their interplay and potential mechanisms, as well as cancer therapeutic resistance. Our study provides promising insights and future directions for the examination and treatment of cancers.


Subject(s)
Ferroptosis , Neoplasms , Humans , Apoptosis/genetics , Cell Death/genetics , Pyroptosis , Neoplasms/genetics
11.
World J Surg Oncol ; 19(1): 233, 2021 Aug 07.
Article in English | MEDLINE | ID: mdl-34364382

ABSTRACT

BACKGROUND: Colon neuroendocrine neoplasms (NENs) have one of the poorest median overall survival (OS) rates among all NENs. The American Joint Committee on Cancer (AJCC) tumor-node-metastasis (TNM) staging system-currently the most commonly used prediction model-has limited prediction accuracy because it does not include parameters such as age, sex, and treatment. The aim of this study was to construct nomograms containing various clinically important parameters to predict the prognosis of patients with colon NENs more accurately. METHODS: Using the Surveillance, Epidemiology, and End Results (SEER) database, we performed a retrospective analysis of colon NENs diagnosed from 1975 to 2016. Data were collected from 1196 patients; almost half were female (617/1196, 51.6%), and the average age was 61.94 ± 13.05 years. Based on the age triple cut-off values, there were 396 (33.1%), 408 (34.1%), and 392 (32.8%) patients in age groups 0-55 years, 55-67 years, and ≥ 68 years, respectively. Patients were randomized into training and validation cohorts (3:1). Independent prognostic factors were used for construction of nomograms to precisely predict OS and cancer-specific survival (CSS) in patients with colon NENs. RESULTS: Multivariate analysis showed that age ≥ 68 years, sex, tumor size, grade, chemotherapy, N stage, and M stage were independent predictors of OS. In the validation cohort, the Concordance index (C-index) values of the OS and CSS nomograms were 0.8345 (95% confidence interval [CI], 0.8044-0.8646) and 0.8209 (95% CI, 0.7808-0.861), respectively. C-index also indicated superior performance of both nomograms (C-index 0.8347 for OS and 0.8668 for CSS) compared with the AJCC TNM classification (C-index 0.7159 for OS and 0.7366 for CSS). CONCLUSIONS: We established and validated new nomograms for more precise prediction of OS and CSS in patients with colon NENs to facilitate individualized clinical decisions.


Subject(s)
Neuroendocrine Tumors , Nomograms , Adolescent , Adult , Aged , Child , Child, Preschool , Colon , Female , Humans , Infant , Infant, Newborn , Middle Aged , Neoplasm Staging , Prognosis , Retrospective Studies , SEER Program , Young Adult
12.
Endocrine ; 61(3): 473-481, 2018 09.
Article in English | MEDLINE | ID: mdl-29916102

ABSTRACT

PURPOSE: Glucagon has been recognized as a pivotal factor implicated in the pathophysiology ofdiabetes. The purpose of this study is to investigate the dynamic secretion levels of serum glucagon (GLA) in patients with type 1 diabetes mellitus (T1DM) with different courses of disease, and to analyze its correlation with blood glucose fluctuation. METHODS: This observational study included 55 T1DM patients and divided into 3 groups according to the courses of disease. Group 1(the disease duration <1 year), Group 2(1≤the disease durations≤5), 3(the disease durations >5 years). All patients underwent a 100g standard steamed buns meal test,measuring the levels of serum glucose, glucagon, insulin, C-peptide in different points of time, and 48 of the total patients used continuous glucose monitoring system (CGMS) to monitor blood glucose. RESULTS: The fasting glucagon level in Group 1 was significantly higher than it in Group 2. Furthermore, the GLA1h, the GLA3h and the AUCGLA0-3h in Group 1 were greatly larger than those in Group 3. Referring to glycemic variability, the LBGI, AUC of hypoglycemia, the percentage of hypoglycemia time andthe times of nocturnal hypoglycemia in Group 1 were significantly lower than those in Group 3. Moreover,the fasting glucagon level was the independent factors to SD and MAGE. The AUCGLA0-3h were negatively correlated with MODD, LBGI, GRADE-hypo and AUC of nocturnal hypoglycemia. CONCLUSIONS: It is concluded that glucagon secretory function impairs with duration of type 1 diabetes extended and correlates to glycemic fluctuation, especially hypoglycemia.


Subject(s)
Blood Glucose , Diabetes Mellitus, Type 1/blood , Glucagon/blood , Adolescent , Adult , Blood Glucose Self-Monitoring , C-Peptide/blood , Fasting/blood , Female , Humans , Insulin/blood , Male , Middle Aged , Time Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...