Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 632
Filter
1.
Cell Signal ; 121: 111283, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38960059

ABSTRACT

It has been demonstrated that circular RNAs (circRNAs) are associated with the development of diabetic retinopathy (DR). Nevertheless, the function of circSLC16A10 in the development of DR remains unclear. In order to investigate the role of circSLC16A10, we employed cell and animal models of DR. An analysis of a public database revealed that hsa_circSLC16A10 was expressed at lower levels in DR patients than in diabetic patients without DR or healthy controls. Additionally, the level of hsa_circSLC16A10 was lower in high glucose (HG)-exposed ARPE-19 cells and diabetic mice. hsa_circSLC16A10 was observed to be mainly distributed in the cytoplasm. Moreover, overexpression of hsa_circSLC16A10 alleviated HG-induced endoplasmic reticulum stress and cell apoptosis in vitro. Furthermore, overexpression of hsa_circSLC16A10 ameliorated HG-induced mitochondrial dysfunction, as evidenced by improvements in mitochondrial structure and function. hsa_circSLC16A10 acted as a hsa-miR-761-5p sponge to increase MFN2 expression. MFN2 knockdown or hsa-miR-761-5p overexpression partially reversed the protective effect of hsa_circSLC16A10 in vitro. The protective effect of mmu_circSLC16A10 against DR was confirmed in an animal model of DR. These findings indicate that circSLC16A10 may regulate DR progression by improving mitochondrial function via the miR-761-5p/MFN2 axis.

2.
Nat Chem Biol ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977788

ABSTRACT

IscB has a similar domain organization to Cas9, but the small size of IscB is better suited for delivery by adeno-associated virus. To improve the low editing efficiency of OgeuIscB (IscB from human gut metagenome) in mammalian cells, we developed high-efficiency miniature base editors by engineering OgeuIscB nickase and its cognate ωRNA, termed IminiBEs. We demonstrated the robust editing efficiency of IminiCBE (67% on average) or IminiABE (52% on average). Fusing non-specific DNA-binding protein Sso7d to IminiBEs increased the editing efficiency of low-efficiency sites by around two- to threefold, and we termed it SIminiBEs. In addition, IminiCBE and SIminiCBE recognize NNRR, NNRY and NNYR target-adjacent motifs, which broaden the canonical NWRRNA target-adjacent motif sites for the wild-type IscB nickase. Overall, IminiBEs and SIminiBEs are efficient miniature base editors for site-specific genomic mutations.

3.
Heliyon ; 10(12): e33073, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39021994

ABSTRACT

At present, in the process of weld induction heat treatment, the common method is to carry out centralized induction heating in the weld area, which will lead to large radial temperature difference of the weld, poor controllability of temperature distribution and easy to cause the defects of residual stress concentration in the weld area. To solve the above problems, this paper adopts the two-sided method to conduct induction heating on both sides of the weld, and at the same time, the auxiliary pulse current is passed into the weld to improve the quality of the weld. ANSYS finite element software is used to establish a multi-field coupling prediction model of electric-magnetic-thermal structure, and explore the distribution law of the auxiliary pulse current and the temperature field of the weld. Finally, an experimental study of pulsed current assisted two-sided induction heating is carried out. Temperature test and metallographic test were carried out respectively to verify the effectiveness of pulsed current assisted induction heating technology.

4.
J Chem Phys ; 160(23)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38884395

ABSTRACT

Understanding the nonadiabatic dynamics of complex systems is a challenging task in computational photochemistry. Herein, we present an efficient and user-friendly quantum mechanics/molecular mechanics (QM/MM) interface to run on-the-fly nonadiabatic dynamics. Currently, this interface consists of an independent set of codes designed for general-purpose use. Herein, we demonstrate the ability and feasibility of the QM/MM interface by integrating it with our long-term developed JADE package. Tailored to handle nonadiabatic processes in various complex systems, especially condensed phases and protein environments, we delve into the theories, implementations, and applications of on-the-fly QM/MM nonadiabatic dynamics. The QM/MM approach is established within the framework of the additive QM/MM scheme, employing electrostatic embedding, link-atom inclusion, and charge-redistribution schemes to treat the QM/MM boundary. Trajectory surface-hopping dynamics are facilitated using the fewest switches algorithm, encompassing classical and quantum treatments for nuclear and electronic motions, respectively. Finally, we report simulations of nonadiabatic dynamics for two typical systems: azomethane in water and the retinal chromophore PSB3 in a protein environment. Our results not only illustrate the power of the QM/MM program but also reveal the important roles of environmental factors in nonadiabatic processes.

5.
J Colloid Interface Sci ; 672: 279-286, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38843680

ABSTRACT

The rational construction of highly active and robust non-precious metal oxygen reduction electrocatalysts is a vital factor to facilitate commercial applications of Zn-air batteries. In this study, a precise and stable heterostructure, comprised of a coupling of Co3Fe7 and Fe3C, was constructed through an interface engineering-induced strategy. The coordination polymerization of the resin with the bimetallic components was meticulously regulated to control the interfacial characteristics of the heterostructure. The synergistic interfacial effects of the heterostructure successfully facilitated electron coupling and rapid charge transfer. Consequently, the optimized CST-FeCo displayed superb oxygen reduction catalytic activity with a positive half-wave potential of 0.855 V vs. RHE. Furthermore, the CST-FeCo air electrode of the liquid zinc-air battery revealed a large specific capacity of 805.6 mAh gZn-1, corresponding to a remarkable peak power density of 162.7 mW cm-2, and a long charge/discharge cycle stability of 220 h, surpassing that of the commercial Pt/C catalyst.

6.
Lab Invest ; 104(7): 102086, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797343

ABSTRACT

Retinoschisin (RS1) is a secretory protein specifically localized to the extracellular domains in both the lateral retina and the pineal gland (PG). However, the functions of RS1 in the pineal body are poorly understood. To address this knowledge gap, in this study, we undertook histochemical, ultrastructural, and Western blotting analyses of the PG in rats and RS1-knock-in transgenic. We found that RS1 plays a key role in pineal gland calcification (PGC) in mice through both extracellular and intracellular pathways. RS1 was clustered around the cell membrane or intracellularly in pinealocytes, actively participating in the exchange of calcium and thereby mediating PGC. Additionally, RS1 deposition is essential for maintaining PGC architecture in the intercellular space of the adult PG. In RS1-knock-in mice with a nonsense mutation (p.Y65X) in the Rs1-domain of RS1, the Rs1-domain is chaotically dispersed in pinealocytes and the intercellular region of the PG. This prevents RS1 from binding calcified spots and forming calcified nodules, ultimately leading to the accumulation of calcareous lamellae in microvesicles. Additionally, RS1 was observed to colocalize with connexin-36, thereby modulating intercellular communication in the PG of both rats and mice. Our study revealed for the first time that RS1 is essential for maintaining PGC architecture and that it colocalizes with connexin 36 to modulate intercellular communication in the PG. These findings provide novel insights into the function of the RS1 gene in the PG.


Subject(s)
Cell Communication , Pineal Gland , Animals , Pineal Gland/metabolism , Rats , Mice , Eye Proteins/metabolism , Eye Proteins/genetics , Calcinosis/metabolism , Calcinosis/pathology , Male , Mice, Transgenic , Mice, Inbred C57BL , Rats, Sprague-Dawley
7.
J Virol ; 98(6): e0000524, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38717113

ABSTRACT

TRIM32 is often aberrantly expressed in many types of cancers. Kaposi's sarcoma-associated herpesvirus (KSHV) is linked with several human malignancies, including Kaposi's sarcoma and primary effusion lymphomas (PELs). Increasing evidence has demonstrated the crucial role of KSHV lytic replication in viral tumorigenesis. However, the role of TRIM32 in herpesvirus lytic replication remains unclear. Here, we reveal that the expression of TRIM32 is upregulated by KSHV in latency, and reactivation of KSHV lytic replication leads to the inhibition of TRIM32 in PEL cells. Strikingly, RTA, the master regulator of lytic replication, interacts with TRIM32 and dramatically promotes TRIM32 for degradation via the proteasome systems. Inhibition of TRIM32 induces cell apoptosis and in turn inhibits the proliferation and colony formation of KSHV-infected PEL cells and facilitates the reactivation of KSHV lytic replication and virion production. Thus, our data imply that the degradation of TRIM32 is vital for the lytic activation of KSHV and is a potential therapeutic target for KSHV-associated cancers. IMPORTANCE: TRIM32 is associated with many cancers and viral infections; however, the role of TRIM32 in viral oncogenesis remains largely unknown. In this study, we found that the expression of TRIM32 is elevated by Kaposi's sarcoma-associated herpesvirus (KSHV) in latency, and RTA (the master regulator of lytic replication) induces TRIM32 for proteasome degradation upon viral lytic reactivation. This finding provides a potential therapeutic target for KSHV-associated cancers.


Subject(s)
Herpesvirus 8, Human , Immediate-Early Proteins , Proteolysis , Trans-Activators , Transcription Factors , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Virus Activation , Virus Replication , Humans , Apoptosis , Cell Line , Herpesvirus 8, Human/growth & development , Herpesvirus 8, Human/metabolism , Herpesvirus 8, Human/pathogenicity , Herpesvirus 8, Human/physiology , Immediate-Early Proteins/metabolism , Immediate-Early Proteins/genetics , Lymphoma, Primary Effusion/virology , Lymphoma, Primary Effusion/metabolism , Proteasome Endopeptidase Complex/metabolism , Sarcoma, Kaposi/virology , Sarcoma, Kaposi/metabolism , Trans-Activators/metabolism , Trans-Activators/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Virus Latency
8.
Front Psychol ; 15: 1404498, 2024.
Article in English | MEDLINE | ID: mdl-38756492

ABSTRACT

Metaphor and simile, two prevalent forms of figurative language widely employed in daily communication, serve as significant research subjects in linguistics. The Career of Metaphor Theory in cognitive linguistics posits that as conventionality increases, the cognitive mechanisms of metaphor comprehension shift from "comparison" to "categorization." In line with this notion, prior electrophysiological investigations have revealed that novel metaphors elicit a stronger N400 brain response compared to conventional metaphors. However, the observed N400 difference between conventional and novel metaphors may merely stem from the familiarity contrast between them, as conventional metaphors are typically more familiar than novel ones. To address this dichotomy, the present study not only compared the N400 responses between conventional and novel metaphors but also between conventional and novel similes. While conventional and novel similes differ in familiarity, similar to conventional and novel metaphors, both are processed via "comparison" mechanisms. The results revealed that novel metaphors elicited larger N400 amplitudes compared to conventional metaphors, aligning with previous findings. In contrast, no significant N400 differences were observed between conventional and novel similes, suggesting that familiarity disparity is unlikely to account for N400 distinctions. Our findings imply that conventional and novel metaphors undergo distinct cognitive processing mechanisms ("comparison" versus "categorization"), thereby providing further empirical validation for the Career of Metaphor Theory.

9.
Int J Immunopathol Pharmacol ; 38: 3946320241249445, 2024.
Article in English | MEDLINE | ID: mdl-38679570

ABSTRACT

BACKGROUND AND OBJECTIVES: Metformin, an oral hypoglycemic drug, has been suggested to possess antitumour activity in several types of cancers. Additionally, interleukin-8 (IL-8) has been reported to be involved in the development and metastasis of many cancers. However, the effect of metformin on IL-8 expression in hepatocellular carcinoma (HCC) remains unclear. Therefore, this study aimed to investigate whether metformin could inhibit IL-8 expression to exert an inhibitory effect on HCC progression. MATERIALS AND METHODS: The IL-8 levels were measured in the plasma of 159 HCC patients (86 men, 73 women; average age 56 years) and in the culture supernatant of HCC cells (Hep3B and HuH7) using flow cytometry. In addition, the protein expression levels of IL-8 were also validated by the Human Protein Atlas (HPA) database. The prognostic value of IL-8 was evaluated using the Kaplan-Meier Plotter database. The association between IL-8 expression and immune checkpoints was estimated using the TIMER and The Cancer Genome Atlas (TCGA) databases. What's more, bioinformatics analysis, western blotting, and transwell assays were conducted to illustrate the molecular mechanism of metformin (≤1 mM) on IL-8 in HCC. RESULTS: IL-8 expression was found to be increased in the plasma of HCC patients, which is consistent with the expression of IL-8 in HCC cells and tissues. High expression of IL-8 was significantly related to poor prognosis. In addition, IL-8 was positively correlated with immune checkpoints in HCC. Notably, we found that low-dose metformin could inhibit the secretion of IL-8 by HCC cells and the migration of HCC cells. Mechanistically, low-dose metformin significantly suppresses HCC metastasis mainly through the AMPK/JNK/IL-8/MMP9 pathway. CONCLUSION: The results indicate that low-dose metformin can inhibit HCC metastasis by suppressing IL-8 expression. Targeting the AMPK/JNK/IL-8 axis may be a promising treatment strategy for patients with HCC metastasis.


Subject(s)
AMP-Activated Protein Kinases , Carcinoma, Hepatocellular , Interleukin-8 , Liver Neoplasms , Metformin , Humans , Metformin/pharmacology , Metformin/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Interleukin-8/metabolism , Interleukin-8/blood , Male , Female , Middle Aged , Cell Line, Tumor , AMP-Activated Protein Kinases/metabolism , Aged , Signal Transduction/drug effects , Cell Movement/drug effects , Neoplasm Metastasis , MAP Kinase Signaling System/drug effects , Hypoglycemic Agents/pharmacology
10.
Phys Chem Chem Phys ; 26(15): 11731-11737, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38563632

ABSTRACT

In conventional strategies to design donor-acceptor (D-A) organic molecules with a large electronic contribution to the first hyperpolarizability (ß), the effects of the torsion angles (θ1 and θ2) between donor and acceptor moieties are barely considered. To address this issue, in this work, a promising and novel intramolecular boron-locking strategy combined with the different locking groups of different acceptors to control θ1 and θ2, has been proposed to make D-A organic molecules with large ß values. Intriguingly, reducing the torsion angles will make the ß value of the pyridiny thiophene triphenylamine unit (Py-Th-TPA) dramatically increase up to 94%, which is mainly ascribed to the smaller θ1 and θ2 leading to lower excited energy of the crucial excited state, and enhanced charge transfer (CT) from TPA to Py-Th moieties, and finally greatly increase the donor and acceptor part contributions to ß. Correlation between the difference, |θ1 - θ2| and ß, provides a large coefficient of determination, R2 = 0.78, which demonstrates that |θ1 - θ2| can be regarded as a potential descriptor for designing nonlinear optics (NLO) materials with D-A architecture. Clearly, we uncovered that θ1 and θ2 play a crucial role in the performance of NLO materials with D-A fragments.

11.
Clin Transl Gastroenterol ; 15(5): e00694, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38441136

ABSTRACT

INTRODUCTION: Colonoscopy is a critical diagnostic tool for colorectal diseases; however, its effectiveness depends on adequate bowel preparation (BP). This study aimed to develop a machine learning predictive model based on Chinese adults for inadequate BP. METHODS: A multicenter prospective study was conducted on adult outpatients undergoing colonoscopy from January 2021 to May 2023. Data on patient characteristics, comorbidities, medication use, and BP quality were collected. Logistic regression and 4 machine learning models (support vector machines, decision trees, extreme gradient boosting, and bidirectional projection network) were used to identify risk factors and predict inadequate BP. RESULTS: Of 3,217 patients, 21.14% had inadequate BP. The decision trees model demonstrated the best predictive capacity with an area under the receiver operating characteristic curve of 0.80 in the validation cohort. The risk factors at the nodes included body mass index, education grade, use of simethicone, diabetes, age, history of inadequate BP, and longer interval. DISCUSSION: The decision trees model we created and the identified risk factors can be used to identify patients at higher risk of inadequate BP before colonoscopy, for whom more polyethylene glycol or auxiliary medication should be used.


Subject(s)
Cathartics , Colonoscopy , Decision Trees , Machine Learning , Humans , Prospective Studies , Middle Aged , Female , Male , Cathartics/administration & dosage , Risk Factors , Adult , Aged , ROC Curve , China/epidemiology , Logistic Models
12.
Schizophr Res Cogn ; 36: 100305, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38486790

ABSTRACT

Background: Schizophrenia is associated with impairments in verbal episodic memory. Strategy for Semantic Association Memory (SESAME) training represents a promising cognitive remediation program to improve verbal episodic memory. Virtual reality (VR) may be a novel tool to increase the ecological validity and transfer of learned skills of traditional cognitive remediation programs. The present proof-of-concept study aimed to assess the feasibility, acceptability, and preliminary efficacy of a VR-based cognitive remediation module inspired by SESAME principles to improve the use of verbal episodic memory strategies in schizophrenia. Methods: Thirty individuals with schizophrenia/schizoaffective disorder completed this study. Participants were randomized to either a VR-based verbal episodic memory training condition inspired by SESAME principles (intervention group) or an active control condition (control group). In the training condition, a coach taught semantic encoding strategies (active rehearsal and semantic clustering) to help participants remember restaurant orders in VR. In the active control condition, participants completed visuospatial puzzles in VR. Attrition rate, participant experience ratings, and cybersickness questionnaires were used to assess feasibility and acceptability. Trial 1 of the Hopkins Verbal Learning Test - Revised was administered pre- and post-intervention to assess preliminary efficacy. Results: Feasibility was demonstrated by a low attrition rate (5.88 %), and acceptability was demonstrated by limited cybersickness and high levels of enjoyment. Although the increase in the number of semantic clusters used following the module did not reach conventional levels of statistical significance in the intervention group, it demonstrated a notable trend with a medium effect size (t = 1.48, p = 0.15, d = 0.54), in contrast to the control group where it remained stable (t = 0.36, p = 0.72, d = 0.13). These findings were similar for the semantic clustering ratio in the intervention (t = 1.61, p = 0.12, d = 0.59) and control (t = 0.36, p = 0.72, d = 0.13) groups. There was no significant change in the number of recalled words in either group following VR immersion. Discussion: This VR intervention was feasible, acceptable, and may be useful for improving the use of semantic encoding strategies. These findings support the use of more ecological approaches for the treatment of cognitive impairments in schizophrenia, such as VR-based cognitive remediation.

13.
J Chem Phys ; 160(10)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38477337

ABSTRACT

We combine on-the-fly trajectory surface hopping simulations and the doorway-window representation of nonlinear optical response functions to create an efficient protocol for the evaluation of time- and frequency-resolved fluorescence (TFRF) spectra and anisotropies of the realistic polyatomic systems. This approach gives the effective description of the proper (e.g., experimental) pulse envelopes, laser field polarizations, and the proper orientational averaging of TFRF signals directly from the well-established on-the-fly nonadiabatic dynamic simulations without extra computational cost. To discuss the implementation details of the developed protocol, we chose cis-azobenzene as a prototype to simulate the time evolution of the TFRF spectra governed by its nonadiabatic dynamics. The results show that the TFRF is determined by the interplay of several key factors, i.e., decays of excited-state populations, evolution of the transition dipole moments along with the dynamic propagation, and scaling factor of the TFRF signals associated with the cube of emission frequency. This work not only provides an efficient and effective approach to simulate the TFRF and anisotropies of realistic polyatomic systems but also discusses the important relationship between the TFRF signals and the underlining nonadiabatic dynamics.

14.
J Orthop Translat ; 45: 10-23, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38434180

ABSTRACT

Background: Treatment of chronic osteomyelitis (bone infection) remains a clinical challenge; in particular, it requires enhanced delivery of antibiotic drugs for the treatment of intracellular Staphylococcus aureus (S. aureus), which prevents infection recurrence and resistance. Previous studies have found that noninvasive shock waves used to treat musculoskeletal diseases can alter cell permeability, however, it is unclear whether shock waves alter cell membrane permeability in chronic osteomyelitis. Furthermore, it remains unknown whether such changes in permeability promote the entry of antibiotics into osteoblasts to exert antibacterial effects. Methods: In our study, trypan blue staining was used to determine the shock wave parameters that had no obvious damage to the osteoblast model; the effect of shocks waves on the cell membrane permeability of osteoblast model was detected by BODIPY®FL vancomycin; high performance liquid chromatography-mass spectrometry (HLPC-MS) was used to detect the effect of shock wave on the entry of antibiotics into the osteoblast model; plate colony counting method was used to detect the clearance effect of shock wave assisted antibiotics on S. aureus in the osteoblast model. To explore the mechanism, the effect of different pulses of shock waves on S. aureus was examined by plate colony counting method, besides, P2X7 receptor in osteoblast was detected by immunofluorescence and the extracellular ATP levels was detected. Furthermore, the effect of P2X7 receptor antagonists KN-62 or A740003 on the intracellular antibacterial activity of shock-assisted antibiotics was observed. Then, we used S. aureus to establish a rat model of chronic tibial osteomyelitis and investigated the efficacy and safety of shock-wave assisted antibiotics in the treatment of chronic osteomyelitis in rats. Results: The viability of the osteoblast models of intracellular S. aureus infection was not significantly affected by the application of up to 400 shock wave pulses at 0.21 mJ/mm2. Surprisingly, the delivery of BODIPY®FL vancomycin to osteoblast model cells was markedly enhanced by this shock wave treatment. Furthermore, the shock wave therapy increased the delivery of hydrophilic antibiotics (vancomycin and cefuroxime sodium), but not lipophilic antibiotics (rifampicin and levofloxacin), which improved the intracellular antibacterial effect. Afterwards, we discovered that shock wave treatment increased the extracellular concentration of ATP (the P2X7 receptor activator), while KN-62 or A740003, a P2X7 receptor inhibitor, decreased intracellular antibacterial activity. We then found that 0.1 mL of 1 × 1011 CFU/mL ATCC25923 S. aureus was suitable for modeling chronic osteomyelitis in rats. Besides, the shock wave-assisted vancomycin treatment with the strongest antibacterial and osteogenic effects among the tested treatments was confirmed in vivo by imaging examination, microbiological cultures, and histopathology, with favorable safety. Conclusions: Our results suggest that shock waves can promote the entry of antibiotics into osteoblasts for antibacteria by changing the cell membrane permeability in a P2X7 receptor-dependent manner. Besides, considering antibacterial and osteogenic efficiency and a high degree of safety in rat osteomyelitis model, shock wave-assisted vancomycin treatment may thus represent a possible adjuvant therapy for chronic osteomyelitis.

15.
FASEB J ; 38(6): e23573, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38526846

ABSTRACT

Familial hypercholesterolemia (FH) is one of the most prevalent monogenetic disorders leading to cardiovascular disease (CVD) worldwide. Mutations in Ldlr, encoding a membrane-spanning protein, account for the majority of FH cases. No effective and safe clinical treatments are available for FH. Adenine base editor (ABE)-mediated molecular therapy is a promising therapeutic strategy to treat genetic diseases caused by point mutations, with evidence of successful treatment in mouse disease models. However, due to the differences in the genomes between mice and humans, ABE with specific sgRNA, a key gene correction component, cannot be directly used to treat FH patients. Thus, we generated a knock-in mouse model harboring the partial patient-specific fragment and including the Ldlr W490X mutation. LdlrW490X/W490X mice recapitulated cholesterol metabolic disorder and clinical manifestations of atherosclerosis associated with FH patients, including high plasma low-density lipoprotein cholesterol levels and lipid deposition in aortic vessels. Additionally, we showed that the mutant Ldlr gene could be repaired using ABE with the cellular model. Taken together, these results pave the way for ABE-mediated molecular therapy for FH.


Subject(s)
Hypercholesterolemia , Hyperlipoproteinemia Type II , Humans , Mice , Animals , RNA, Guide, CRISPR-Cas Systems , Hyperlipoproteinemia Type II/genetics , Hyperlipoproteinemia Type II/therapy , Mutation , Hypercholesterolemia/genetics , Cholesterol , Receptors, LDL/genetics , Receptors, LDL/metabolism
16.
Clin Immunol ; 261: 109925, 2024 04.
Article in English | MEDLINE | ID: mdl-38310993

ABSTRACT

BACKGROUND: Inflammatory factors are being recognized as critical modulators of host antitumor immunity in liver cancer. We have previously shown that tumor cell-released LC3B positive extracellular vesicles (LC3B+ EVs) are responsible for malignant progression by dampening antitumor immunity. However, the relationship between LC3B+ EVs and inflammatory factors in the regulation of the liver cancer microenvironment remains unclear. METHODS: Flow cytometry analyses were performed to examine the panel of 12 cytokines, the main source of positive cytokines, and plasma LC3B+ EVs carrying HSP90α in peripheral blood of liver cancer patients. We correlated the levels of plasma IL-6, IL-8 with LC3B+ EVs carrying HSP90α and with prognosis. In vitro culture of healthy donor leukocytes with liver cancer-derived LC3B+ EVs was performed to evaluate the potential effect of blocking HSP90α, IL-6 or IL-8 alone or in combination with PD-1 inhibitor on CD8+ T cell function. We also investigated the potential associations of MAP1LC3B, HSP90AA1, IL6 or IL8 with immunotherapy efficacy using the TCGA databases. RESULTS: In liver cancer patients, plasma IL-6 and IL-8 levels were significantly higher than in healthy controls and associated with poor clinical outcome. In peripheral blood, levels of plasma LC3B+ EVs carrying HSP90α were significantly elevated in HCC patients and positively associated with IL-6 and IL-8 levels, which are predominantly secreted by monocytes and neutrophils. Moreover, LC3B+ EVs from human liver cancer cells promoted the secretion of IL-6 and IL-8 by leukocytes through HSP90α. Besides, we show that the cytokines IL-6 and IL-8 secreted by LC3B+ EVs-induced leukocytes were involved in the inhibition of CD8+ T-cell function, while blockade of the HSP90α on the LC3B+ EVs, IL-6, or IL-8 could enhance anti-PD-1-induced T cell reinvigoration. Finally, patients who received anti-PD-1/PD-L1 immunotherapy with high MAP1LC3B, HSP90AA1, IL6, or IL8 expression had a lower immunotherapy efficacy. CONCLUSIONS: Our data suggest that liver cancer-derived LC3B+ EVs promote a pro-oncogenic inflammatory microenvironment by carrying membrane-bound HSP90α. Targeting HSP90α on the LC3B+ EVs, IL-6, or IL-8 may synergize with anti-PD-1 treatment to enhance the CD8+ T-cell functions, which may provide novel combination strategies in the clinic for the treatment of liver cancer.


Subject(s)
Carcinoma, Hepatocellular , Extracellular Vesicles , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/therapy , Interleukin-6/metabolism , Interleukin-8/metabolism , Liver Neoplasms/drug therapy , Tumor Microenvironment , Cytokines/metabolism , Immunotherapy , Extracellular Vesicles/metabolism , Extracellular Vesicles/pathology
17.
Cytokine ; 177: 156555, 2024 05.
Article in English | MEDLINE | ID: mdl-38387232

ABSTRACT

Interferon-alpha (IFN-α) is widely used in the clinical treatment of patients with chronic hepatitis B and hepatocellular carcinoma (HCC). However, high levels of CXCL8 are associated with resistance to IFN-α therapy and poorer prognosis in advanced cancers. In this study, we investigated whether IFN-α could directly induce the production of CXCL8 in HCC cells and whether CXCL8 could antagonize the antitumor activity of IFN-α. We found that IFN-α not only upregulated the expression of the inducible genes CXCL9, CXCL10, CXCL11 and PD-L1, but also significantly stimulated CXCL8 secretion in HCC cells. Mechanically, IFN-α induces CXCL8 expression by activating the AKT and JNK pathways. In addition, our results demonstrate that IFN-α exposure significantly increases the differentiation of HCC stem cells, but this effect is reversed by the addition of the CXCL8 receptor CXCR1/2 inhibitor Reparixin and STAT3 inhibitor Stattic. Besides, our study reveals that the cytokine CXCL8 secreted by IFN-α-induced HCC cells inhibits T-cell function. Conversely, inhibition of CXCL8 promotes TNF-α and IFN-γ secretion by T cells. Finally, liver cancer patients who received anti-PD-1/PD-L1 immunotherapy with high CXCL8 expression had a lower immunotherapy efficacy. Overall, our findings clarify that IFN-α triggers immunosuppression and cancer stem cell differentiation in hepatocellular carcinoma by upregulating CXCL8 secretion. This discovery provides a novel approach to enhance the effectiveness of HCC treatment in the future.


Subject(s)
Carcinoma, Hepatocellular , Interferon-alpha , Interleukin-8 , Liver Neoplasms , Humans , B7-H1 Antigen/metabolism , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Differentiation , Immunosuppression Therapy , Interferon-alpha/pharmacology , Interferon-gamma/metabolism , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Interleukin-8/metabolism
18.
World J Gastrointest Surg ; 16(1): 21-28, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38328334

ABSTRACT

BACKGROUND: The maximum outer diameter (MOD) of the appendix is an essential parameter for diagnosing acute appendicitis, but there is space for improvement in ultrasound (US) diagnostic performance. AIM: To investigate whether combining the ratio of the cross diameters (RATIO) of the appendix with MOD of the appendix can enhance the diagnostic performance of acute appendicitis. METHODS: A retrospective study was conducted, and medical records of 233 patients with acute appendicitis and 112 patients with a normal appendix were reviewed. The MOD and RATIO of the appendix were calculated and tested for their diagnostic performance of acute appendicitis, both individually and in combination. RESULTS: The RATIO for a normal appendix was 1.32 ± 0.16, while for acute appendicitis it was 1.09 ± 0.07. The cut-off value for RATIO was determined to be ≤ 1.18. The area under the receiver operating characteristic curve (AUC) for diagnosing acute appendicitis using RATIO ≤ 1.18 and MOD > 6 mm was 0.870 and 0.652, respectively. There was a significant difference in AUC between RATIO ≤ 1.18 and MOD > 6 mm (P < 0.0001). When comparing the combination of RATIO ≤ 1.18 and MOD > 6 mm with MOD > 6 mm alone, the combination showed increased specificity, positive predictive value (PPV), and AUC. However, the sensitivity and negative predictive value decreased. CONCLUSION: Combining RATIO of the appendix ≤ 1.18 and MOD > 6 mm can significantly improve the specificity, PPV, and AUC in the US diagnosis of acute appendicitis.

19.
Cell Discov ; 10(1): 15, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38331872

ABSTRACT

Histone variant H2A.Z is found at promoters and regulates transcription. The ATP-dependent chromatin remodeler SRCAP complex (SRCAP-C) promotes the replacement of canonical histone H2A-H2B dimer with H2A.Z-H2B dimer. Here, we determined structures of human SRCAP-C bound to H2A-containing nucleosome at near-atomic resolution. The SRCAP subunit integrates a 6-subunit actin-related protein (ARP) module and an ATPase-containing motor module. The ATPase-associated ARP module encircles half of the nucleosome along the DNA and may restrain net DNA translocation, a unique feature of SRCAP-C. The motor module adopts distinct nucleosome binding modes in the apo (nucleotide-free), ADP-bound, and ADP-BeFx-bound states, suggesting that ATPase-driven movement destabilizes H2A-H2B by unwrapping the entry DNA and pulls H2A-H2B out of nucleosome through the ZNHIT1 subunit. Structure-guided chromatin immunoprecipitation sequencing analysis confirmed the requirement of H2A-contacting ZNHIT1 in maintaining H2A.Z occupancy on the genome. Our study provides structural insights into the mechanism of H2A-H2A.Z exchange mediated by SRCAP-C.

20.
Nat Mater ; 23(6): 796-802, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38172546

ABSTRACT

Condensates are a hallmark of emergence in quantum materials such as superconductors and charge density waves. Excitonic insulators are an intriguing addition to this library, exhibiting spontaneous condensation of electron-hole pairs. However, condensate observables can be obscured through parasitic coupling to the lattice. Here we employ nonlinear terahertz spectroscopy to disentangle such obscurants through measurement of the quantum dynamics. We target Ta2NiSe5, a putative room-temperature excitonic insulator in which electron-lattice coupling dominates the structural transition (Tc = 326 K), hindering identification of excitonic correlations. A pronounced increase in the terahertz reflectivity manifests following photoexcitation and exhibits a Bose-Einstein condensation-like temperature dependence well below the Tc, suggesting an approach to monitor the exciton condensate dynamics. Nonetheless, dynamic condensate-phonon coupling remains as evidenced by peaks in the enhanced reflectivity spectrum at select infrared-active phonon frequencies, indicating that parametric reflectivity enhancement arises from phonon squeezing. Our results highlight that coherent dynamics can drive parametric stimulated emission.

SELECTION OF CITATIONS
SEARCH DETAIL
...