Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(10)2024 May 20.
Article in English | MEDLINE | ID: mdl-38791594

ABSTRACT

In plants, nucleotide-binding site and leucine-rich repeat proteins (NLRs) play pivotal roles in effector-triggered immunity (ETI). However, the precise mechanisms underlying NLR-mediated disease resistance remain elusive. Previous studies have demonstrated that the NLR gene pair Pik-H4 confers resistance to rice blast disease by interacting with the transcription factor OsBIHD1, consequently leading to the upregulation of hormone pathways. In the present study, we identified an RNA recognition motif (RRM) protein, OsRRM2, which interacted with Pik1-H4 and Pik2-H4 in vesicles and chloroplasts. OsRRM2 exhibited a modest influence on Pik-H4-mediated rice blast resistance by upregulating resistance genes and genes associated with chloroplast immunity. Moreover, the RNA-binding sequence of OsRRM2 was elucidated using systematic evolution of ligands by exponential enrichment. Transcriptome analysis further indicated that OsRRM2 promoted RNA editing of the chloroplastic gene ndhB. Collectively, our findings uncovered a chloroplastic RRM protein that facilitated the translocation of the NLR gene pair and modulated chloroplast immunity, thereby bridging the gap between ETI and chloroplast immunity.


Subject(s)
Chloroplasts , Gene Expression Regulation, Plant , Oryza , Plant Immunity , Plant Proteins , Chloroplasts/metabolism , Chloroplasts/genetics , Plant Immunity/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Oryza/genetics , Oryza/metabolism , Oryza/immunology , Leucine-Rich Repeat Proteins , Binding Sites , RNA Recognition Motif Proteins/metabolism , RNA Recognition Motif Proteins/genetics , Plant Diseases/genetics , Plant Diseases/immunology , Disease Resistance/genetics , NLR Proteins/metabolism , NLR Proteins/genetics , RNA Editing
2.
Int J Mol Sci ; 24(22)2023 Nov 07.
Article in English | MEDLINE | ID: mdl-38003241

ABSTRACT

The intricate regulatory process governing rice immunity against the blast fungus Magnaporthe oryzae remains a central focus in plant-pathogen interactions. In this study, we investigated the important role of Osa-miR11117, an intergenic microRNA, in regulating rice defense mechanisms. Stem-loop qRT-PCR analysis showed that Osa-miR11117 is responsive to M. oryzae infection, and overexpression of Osa-miR11117 compromises blast resistance. Green fluorescent protein (GFP)-based reporter assay indicated OsPAO4 is one direct target of Osa-miR11117. Furthermore, qRT-PCR analysis showed that OsPAO4 reacts to M. oryzae infection and polyamine (PA) treatment. In addition, OsPAO4 regulates rice resistance to M. oryzae through the regulation of PA accumulation and the expression of the ethylene (ETH) signaling genes. Taken together, these results suggest that Osa-miR11117 is targeting OsPAO4 to regulate blast resistance by adjusting PA metabolism and ETH signaling pathways.


Subject(s)
Ascomycota , Magnaporthe , Oryza , Oryza/metabolism , Magnaporthe/physiology , Plant Diseases/microbiology , Disease Resistance/genetics
3.
Front Plant Sci ; 14: 1168900, 2023.
Article in English | MEDLINE | ID: mdl-37674735

ABSTRACT

Introduction: Root cutting is an important process in garlic field harvesting but is the weakest link in the full mechanization of garlic production. To improve the current situation of technological backwardness and poor operational quality of mechanized garlic root-cutting in the main garlic-producing regions of China, this study combined the physical characteristics and agronomic requirements of garlic plants, and proposed an innovative floating root-cutting technology for garlic combine harvesters that enables the top alignment of bulb, adaptive profiling floating of cutter, and embedded cutting of roots. Methods: Through the kinematic analysis of the floating cutting process, the coordinate equations of the initial contact point of the bulb, the mathematical model of the floating displacement of the cutting component. Using computer simulation techniques, the dynamic simulation study of the floating cutting process was carried out in the rigid-flexible coupling numerical simulation model of root-cutting mechanism and garlic plant. The influence law of garlic conveying speed, extension spring preload force and stiffness on the floating displacement of the cutting component and the angular velocity of swing arm reset and its formation causes were analyzed by a single-factor simulation test. The key operating parameters of the root-cutting mechanism were optimized through the computerized virtual orthogonal test and fuzzy comprehensive evaluation. Results and discussion: The significance of the factors affecting the floating cutting performance decreased in the following order: extension spring preload force, garlic conveying speed and extension spring stiffness. The optimal parameter combination of the root cutting mechanism obtained from the optimization were as follow: extension spring preload force was 16 N, garlic conveying speed was 0.8 m/s, and extension spring stiffness was 215 N/m. Tests conducted with the optimal parameter combination yielded a root excision rate of 92.72%, which meets the requirements of Chinese garlic field harvesting quality. This study provides computer simulation optimization methods for the optimal design of the root-cutting mechanism, and also provides technical and equipment support for the full mechanization of garlic production in China.

4.
Foods ; 11(15)2022 Jul 24.
Article in English | MEDLINE | ID: mdl-35892782

ABSTRACT

Traditional manual garlic root cutting is inefficient and can cause food safety problems. To develop food processing equipment, a novel and accurate object detection method for garlic using deep learning-a convolutional neural network-is proposed in this study. The you-only-look-once (YOLO) algorithm, which is based on lightweight and transfer learning, is the most advanced computer vision method for single large object detection. To detect the bulb, the YOLOv2 model was modified using an inverted residual module and residual structure. The modified model was trained based on images of bulbs with varied brightness, surface attachment, and shape, which enabled sufficient learning of the detector. The optimum minibatches and epochs were obtained by comparing the test results of different training parameters. Research shows that IRM-YOLOv2 is superior to the SqueezeNet, ShuffleNet, and YOLOv2 models of classical neural networks, as well as the YOLOv3 and YOLOv4 algorithm models. The confidence score, average accuracy, deviation, standard deviation, detection time, and storage space of IRM-YOLOv2 were 0.98228, 99.2%, 2.819 pixels, 4.153, 0.0356 s, and 24.2 MB, respectively. In addition, this study provides an important reference for the application of the YOLO algorithm in food research.

5.
Foods ; 11(20)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-37431016

ABSTRACT

Garlic root cutting is generally performed manually; it is easy for the workers to sustain hand injuries, and the labor efficiency is low. However, the significant differences between individual garlic bulbs limit the development of an automatic root cutting system. To address this problem, a deep learning model based on transfer learning and a low-cost computer vision module was used to automatically detect garlic bulb position, adjust the root cutter, and cut garlic roots on a garlic root cutting test bed. The proposed object detection model achieved good performance and high detection accuracy, running speed, and detection reliability. The visual image of the output layer channel of the backbone network showed the high-level features extracted by the network vividly, and the differences in learning of different networks clearly. The position differences of the cutting lines predicted by different backbone networks were analyzed through data visualization. The excellent and stable performance indicated that the proposed model had learned the correct features in the data of different brightness. Finally, the root cutting system was verified experimentally. The results of three experiments with 100 garlic bulbs each indicated that the mean qualified value of the system was 96%. Therefore, the proposed deep learning system can be applied in garlic root cutting which belongs to food primary processing.

6.
J Integr Plant Biol ; 63(2): 393-408, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33241917

ABSTRACT

Class III peroxidases (CIII Prxs) play critical roles in plant immunity by scavenging reactive oxygen species (ROS). However, the functions of CIII Prxs in rice (Oryza sativa L.) immunity are largely unexplored. Here, we report a Prx precursor, OsPrx30, that is responsive to the bacterial blight Xanthomonas oryzae pv. oryzae (Xoo). OsPrx30 was primarily expressed in rice roots, leaves, and stems, and its protein product was mainly localized at the endoplasmic reticulum. Overexpression of OsPrx30 enhanced the plant's susceptibility to Xoo by maintaining a high level of peroxidase (POD) activity and reducing the content of H2 O2 , whereas depletion of OsPrx30 had the opposite effects. Furthermore, we identified an AT-hook transcription factor, OsATH1, that is specifically bound to the OsPrx30 promoter. As observed in plants overexpressing OsPrx30, depletion of OsATH1 enhanced susceptibility to Xoo. Finally, we demonstrated that depletion of OsATH1 increased histone H3 acetylation at the AT-rich region of the OsPrx30 promoter. Taken together, these results reveal a mechanism underlying the POD-induced natural resistance to bacterial diseases and suggest a model for transcription regulation of Prx genes in rice.


Subject(s)
Disease Resistance/genetics , Genes, Plant , Oryza/genetics , Oryza/microbiology , Peroxidases/genetics , Plant Proteins/genetics , Reactive Oxygen Species/metabolism , Transcription, Genetic , AT-Hook Motifs , Acetylation , Base Sequence , Endoplasmic Reticulum/metabolism , Gene Expression Regulation, Plant , Histones/metabolism , Models, Biological , Organ Specificity/genetics , Peroxidases/metabolism , Phylogeny , Plant Proteins/metabolism , Promoter Regions, Genetic , Protein Transport , Signal Transduction , Subcellular Fractions/metabolism , Xanthomonas/physiology
7.
BMC Genomics ; 21(1): 603, 2020 Aug 31.
Article in English | MEDLINE | ID: mdl-32867689

ABSTRACT

BACKGROUND: Seed germination and young seedling growth are important agricultural traits for developing populations of both irrigated and directly seeded rice. Previous studies have focused on the identification of QTLs. However, there are few studies on the metabolome or transcriptome of germination and young seedling growth in rice. RESULTS: Here, an indica rice and a japonica rice were used as materials, and the transcripts and metabolites were detected during the germination and young seedling growth periods on a large scale by using RNA sequencing and a widely targeted metabolomics method, respectively. Fourteen shared transcripts and 15 shared metabolites that were continuously differentially expressed in the two materials were identified and may be essential for seed germination and young seedling growth. Enrichment analysis of differentially expressed genes in transcriptome expression profiles at different stages indicated that cell wall metabolism, lipid metabolism, nucleotide degradation, amino acid, etc., were enriched at 0-2 days, and most of the results are consistent with those of previous reports. Specifically, phenylpropanoid biosynthesis and glutathione metabolism were continuously enriched during the seed germination and young seedling growth stages. Next, KO enrichment analysis was conducted by using the differentially expressed genes of the two materials at 2, 3 and 4 days. Fourteen pathways were enriched. Additionally, 44 differentially expressed metabolites at 2, 3 and 4 days were identified. These metabolites may be responsible for the differences in germination and young seedling growth between the two materials. Further attention was focused on the ascorbate-glutathione pathway, and it was found that differences in ROS-scavenging abilities mediated by some APX, GPX and GST genes may be directly involved in mediating differences in the germination and young seedling growth speed of the two materials. CONCLUSIONS: In summary, these results may enhance the understanding of the overall mechanism of seed germination and young seedling growth, and the outcome of this study is expected to facilitate rice breeding for direct seeding.


Subject(s)
Germination , Metabolome , Oryza/genetics , Transcriptome , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Oryza/growth & development , Oryza/metabolism , Seedlings/growth & development , Seedlings/metabolism
8.
Front Plant Sci ; 8: 127, 2017.
Article in English | MEDLINE | ID: mdl-28220140

ABSTRACT

The regulation of innate immunity and plant growth, along with the trade-off between them, affects the defense and recovery mechanisms of the plant after it is attacked by pathogens. Although it is known that hormonal crosstalk plays a major role in regulating interaction of plant growth and PAMP-triggered immunity, the relationship between plant growth and effector-triggered immunity (ETI) remains unclear. In a large-scale yeast two-hybrid screening for Pik-H4-interacting proteins, a homeodomain transcription factor OsBIHD1 was identified, which is previously known to function in biotic and abiotic stress responses. The knockout of OsBIHD1 in rice lines carrying Pik-H4 largely compromised the resistance of the rice lines to Magnaporthe oryzae, the fungus that causes rice blast. While overexpression of OsBIHD1 resulted in enhanced expression of the pathogenesis-related (PR) and ethylene (ET) synthesis genes. Moreover, OsBIHD1 was also found to directly bind to the promoter region of ethylene-synthesis enzyme OsACO3. In addition, OsBIHD1 overexpression or deficiency provoked dwarfism and reduced brassinosteroid (BR) insensitivity through repressing the expression of several critical genes involved in BR biosynthesis and BR signaling. During M. oryzae infection, transcript levels of the crucial BR catabolic genes (CYP734A2, CYP734A4, and CYP734A6) were significantly up-regulated in OsBIHD1-OX plants. Furthermore, OsBIHD1 was found to be capable of binding to the sequence-specific cis-elements on the promoters of CYP734A2 to suppress the plant growth under fungal invasion. Our results collectively suggest a model that OsBIHD1 is required for Pik-H4-mediated blast resistance through modulating the trade-off between resistance and growth by coordinating brassinosteroid-ethylene pathway.

9.
PLoS One ; 11(11): e0166249, 2016.
Article in English | MEDLINE | ID: mdl-27829023

ABSTRACT

In a previous transcriptome analysis of early response genes in rice during Magnaporthe oryzae infection, we identified a CONSTANS-like (COL) gene OsCOL9. In the present study, we investigated the functional roles of OsCOL9 in blast resistance. OsCOL9 belonged to group II of the COL protein family, and it contained a BB-box and a C-terminal CCT (CONSTANS, COL and TOC1) domain. OsCOL9 was found in the nucleus of rice cells, and it exerted transcriptional activation activities through its middle region (MR). Magnaporthe oryzae infection induced OsCOL9 expression, and transgenic OsCOL9 knock-out rice plants showed increased pathogen susceptibility. OsCOL9 was a critical regulator of pathogen-related genes, especially PR1b, which were also activated by exogenous salicylic acid (SA) and 1-aminocyclopropane-1-carboxylicacid (ACC), the precursor of ethylene (ET). Further analysis indicated that OsCOL9 over-expression increased the expressions of phytohormone biosynthetic genes, NPR1, WRKY45, OsACO1 and OsACS1, which were related to SA and ET biosynthesis. Interestingly, we found that OsCOL9 physically interacted with the scaffold protein OsRACK1 through its CCT domain, and the OsRACK1 expression was induced in response to exogenous SA and ACC as well as M. oryzae infection. Taken together, these results indicated that the COL protein OsCOL9 interacted with OsRACK1, and it enhanced the rice blast resistance through SA and ET signaling pathways.


Subject(s)
Ethylenes/metabolism , Genes, Plant/physiology , Magnaporthe , Oryza/physiology , Plant Diseases/microbiology , Plant Growth Regulators/physiology , Receptors, Cell Surface/physiology , Salicylic Acid/metabolism , Signal Transduction/physiology , Disease Resistance/genetics , Disease Resistance/physiology , Gene Expression Regulation, Plant/physiology , Genes, Plant/genetics , Magnaporthe/physiology , Oryza/genetics , Oryza/microbiology , Plants, Genetically Modified , Real-Time Polymerase Chain Reaction , Receptors for Activated C Kinase , Receptors, Cell Surface/genetics , Two-Hybrid System Techniques
10.
Biochem Biophys Res Commun ; 479(2): 173-178, 2016 10 14.
Article in English | MEDLINE | ID: mdl-27620492

ABSTRACT

Flowering or heading is one of most important agronomic traits in rice. It has been characterized that CONSTANS (CO) and CONSTANS-like (COL) proteins are critical flowering regulators in response to photoperiodic stress in plants. We have previously identified that the COL family member OsCOL9 can positively enhance the rice blast resistance. In the present study, we aimed to explore the functional role of OsCOL9 in modulating the photoperiodic flowering. Our data showed that overexpression of OsCOL9 delayed the flowering time under both short-day (SD) and long-day (LD) conditions, leading to suppressed expressions of EHd1, RFT and Hd3a at the mRNA Level. OsCOL9 expression exhibited two types of circadian patterns under different daylight conditions, and it could delay the heading date by suppressing the Ehd1 photoperiodic flowering pathway. In contrast, the expressions of previously reported flowering regulators were not significantly changed in OsCOL9 transgenic plants, indicating that OsCOL9 functioned independently of other flowering pathways. In addition, OsCOL9 served as a potential yield gene, and its deficiency reduced the grain number of main panicle in plants. Furthermore, yeast two-hybrid assay indicated that OsCOL9 physically interacted with Receptor for Activated C-kinase 1 (OsRACK1). Rhythmic pattern analysis suggested that OsRACK1 responded to the change of daylight, which was regulated by the circadian clock. Taken together, our results revealed that OsCOL9 could delay the flowering time in rice by repressing the Ehd1 pathway.


Subject(s)
Flowers/genetics , Gene Expression Regulation, Developmental/genetics , Gene Expression Regulation, Plant/genetics , Oryza/genetics , Plant Proteins/genetics , Repressor Proteins/genetics , Signal Transduction/genetics , Base Sequence , Flowers/growth & development , Flowers/metabolism , Gene Expression Regulation, Developmental/radiation effects , Gene Expression Regulation, Plant/radiation effects , Oryza/growth & development , Oryza/metabolism , Photoperiod , Plant Proteins/metabolism , Plants, Genetically Modified , Protein Binding , Receptors for Activated C Kinase , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Repressor Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Time Factors , Two-Hybrid System Techniques
11.
Front Plant Sci ; 7: 2041, 2016.
Article in English | MEDLINE | ID: mdl-28119718

ABSTRACT

Although adenosine monophosphate (AMP) binding domain is widely distributed in multiple plant species, detailed molecular functions of AMP binding proteins (AMPBPs) in plant development and plant-pathogen interaction remain unclear. In the present study, we identified an AMPBP OsAAE3 from a previous analysis of early responsive genes in rice during Magnaporthe oryzae infection. OsAAE3 is a homolog of Arabidopsis AAE3 in rice, which encodes a 4-coumarate-Co-A ligase (4CL) like protein. A phylogenetic analysis showed that OsAAE3 was most likely 4CL-like 10 in an independent group. OsAAE3 was localized to cytoplasm, and it could be expressed in various tissues. Histochemical staining of transgenic plants carrying OsAAE3 promoter-driven GUS (ß-glucuronidase) reporter gene suggested that OsAAE3 was expressed in all tissues of rice. Furthermore, OsAAE3-OX plants showed increased susceptibility to M. Oryzae, and this finding was attributable to decreased expression of pathogen-related 1a (PR1) and low level of peroxidase (POD) activity. Moreover, OsAAE3 over-expression resulted in increased content of H2O2, leading to programmed cell-death induced by reactive oxygen species (ROS). In addition, OsAAE3 over-expression repressed the floret development, exhibiting dramatically twisted glume and decreased fertility rate of anther. Meanwhile, the expressions of lignin biosynthesis genes were significantly decreased in OsAAE3-OX plants, thereby leading to reduced lignin content. Taken together, OsAAE3 functioned as a negative regulator in rice blast resistance, floret development, and lignin biosynthesis. Our findings further expanded the knowledge in functions of AMBPs in plant floret development and the regulation of rice-fungus interaction.

12.
Prep Biochem Biotechnol ; 46(4): 399-405, 2016 May 18.
Article in English | MEDLINE | ID: mdl-26176886

ABSTRACT

Strains of Leuconostoc mesenteroides, Pediococcus pentosaceus, and Lactobacillus brevis were identified from mango fruits by partial 16S rDNA gene sequence. Based on the ability of producing mannitol and diacetyl, Leuconostoc mesenteroides MPL18 and MPL39 were selected within the lactic acid bacteria isolates, and used as mixed starters to ferment mango juice (MJ). Both the autochthonous strains grew well in fermented mango juice (FMJ) and remained viable at 9.81 log cfu mL(-1) during 30 days of storage at 4°C. The content of total sugar of FMJ was lower than that of MJ, while the concentration of mannitol was higher than that of MJ, and the concentration of diacetyl was 3.29 ± 0.12 mg L(-1). Among detected organic acids including citric acid, gallic acid, lactic acid, and acetic acid, only citric acid and gallic acid were found in MJ, while all detected organic acids were found in FMJ. The concentration of lactic acid of FMJ was the highest (78.62 ± 13.66 mM) among all detected organic acids. The DPPH radical scavenging capacity of FMJ was higher than that of MJ. Total phenolic compounds were better preserved in FMJ. The acidity and sweetness had a noticeable impact on the overall acceptance of the treated sample.


Subject(s)
Fermentation , Lactobacillaceae/metabolism , Mangifera/metabolism , Probiotics , Genotype , Lactobacillaceae/genetics , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...