Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 120(11): 117001, 2018 Mar 16.
Article in English | MEDLINE | ID: mdl-29601772

ABSTRACT

We investigate the terahertz (THz)-pulse-driven nonlinear response in the d-wave cuprate superconductor Bi_{2}Sr_{2}CaCu_{2}O_{8+x} (Bi2212) using a THz pump near-infrared probe scheme in the time domain. We observe an oscillatory behavior of the optical reflectivity that follows the THz electric field squared and is markedly enhanced below T_{c}. The corresponding third-order nonlinear effect exhibits both A_{1g} and B_{1g} symmetry components, which are decomposed from polarization-resolved measurements. A comparison with a BCS calculation of the nonlinear susceptibility indicates that the A_{1g} component is associated with the Higgs mode of the d-wave order parameter.

2.
Sci Adv ; 1(4): e1500033, 2015 May.
Article in English | MEDLINE | ID: mdl-26601180

ABSTRACT

Maximizing the sustainable supercurrent density, J C, is crucial to high-current applications of superconductivity. To achieve this, preventing dissipative motion of quantized vortices is key. Irradiation of superconductors with high-energy heavy ions can be used to create nanoscale defects that act as deep pinning potentials for vortices. This approach holds unique promise for high-current applications of iron-based superconductors because J C amplification persists to much higher radiation doses than in cuprate superconductors without significantly altering the superconducting critical temperature. However, for these compounds, virtually nothing is known about the atomic-scale interplay of the crystal damage from the high-energy ions, the superconducting order parameter, and the vortex pinning processes. We visualize the atomic-scale effects of irradiating FeSe x Te1-x with 249-MeV Au ions and find two distinct effects: compact nanometer-sized regions of crystal disruption or "columnar defects," plus a higher density of single atomic site "point" defects probably from secondary scattering. We directly show that the superconducting order is virtually annihilated within the former and suppressed by the latter. Simultaneous atomically resolved images of the columnar crystal defects, the superconductivity, and the vortex configurations then reveal how a mixed pinning landscape is created, with the strongest vortex pinning occurring at metallic core columnar defects and secondary pinning at clusters of point-like defects, followed by collective pinning at higher fields.

SELECTION OF CITATIONS
SEARCH DETAIL
...