Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 11(9): 8796-8803, 2017 09 26.
Article in English | MEDLINE | ID: mdl-28832113

ABSTRACT

The sliding-mode triboelectric nanogenerator (S-TENG) with grated structure has important applications in energy harvest and active sensors; however its concavo-convex structure leads to large frictional resistance and abrasion. Here, we developed a S-TENG with a chemical group grated structure (S-TENG-CGG), in which the triboelectric layer's triboelectric potential has a positive-negative alternating charged structure. The triboelectric layer of the S-TENG-CGG was fabricated through a reactive ion etching process with a metal shadow mask with grated structure. In the etched region, the nylon film, originally positively charged as in friction with stainless steel, gained opposite triboelectric potential and became negatively charged because of the change of surface functional groups. The output signals of the S-TENG-CGG are alternating and the frequency is determined by both the segment numbers and the moving speed. The applications of the S-TENG-CGG in the charging capacitor and driving calculator are demonstrated. In the S-TENG-CGG, since there is no concavo-convex structure, the frictional resistance and abrasion are largely reduced, which enhances its performances in better stability and longer working time.

2.
ACS Appl Mater Interfaces ; 9(31): 26126-26133, 2017 Aug 09.
Article in English | MEDLINE | ID: mdl-28707896

ABSTRACT

A smart floor is demonstrated by integrating a square-frame triboelectric nanogenerator (SF-TENG) into a standard wood floor. The smart floor has two working modes based on two pairs of triboelectric materials: one is purposely chosen polytetrafluoroethylene films and aluminum (Al) balls, and the other is the floor itself and the objects that can be triboelectrically charged, such as basketball, shoe soles, and Scotch tape, etc. Utilizing the Al balls enclosed inside shallow boxes, the smart floor is capable of harvesting vibrational energy and, hence, provides a nonintrusive way to detect sudden falls in elderly people. In addition, when the basketball is bounced repeatedly on the floor, the average output voltage and current are 364 ± 43 V and 9 ± 1 µA, respectively, and 87 serially connected light-emitting diodes can be lit up simultaneously. Furthermore, the friction between the triboelectrically chargeable objects and the floor can also induce an alternating current output in the external circuit without the vibration of the Al balls. Normal human footsteps on the floor produce a voltage of 238 ± 17 V and a current of 2.4 ± 0.3 µA. Therefore, this work presents a smart floor with built-in SF-TENG without compromising the flexibility and stability of the standard wood floor and also demonstrates a way to harvest ambient energy solely by using conventional triboelectric materials in our daily life.

3.
ACS Nano ; 11(6): 6211-6217, 2017 06 27.
Article in English | MEDLINE | ID: mdl-28489941

ABSTRACT

We developed a high-efficiency rotating triboelectric nanogenerator (R-TENG) enhanced polyimide (PI) nanofiber air filter for particulate matter (PM) removal in ambient atmosphere. The PI electrospinning nanofiber film exhibited high removal efficiency for the PM particles that have diameters larger than 0.5 µm. When the R-TENG is connected, the removal efficiency of the filter is enhanced, especially when the particle diameters of the PM are smaller than 100 nm. The highest removal efficiency is 90.6% for particles with a diameter of 33.4 nm and the highest efficiency enhancement reaches 207.8% at the diameter of 76.4 nm where the removal efficiency enhanced from 27.1% to 83.6%. This technology with zero ozone release and low pressure drop offers an approach for air cleaning and haze treatment.

4.
ACS Appl Mater Interfaces ; 9(13): 11882-11888, 2017 Apr 05.
Article in English | MEDLINE | ID: mdl-28299934

ABSTRACT

As a green and eco-friendly technology, triboelectric nanogenerator (TENG) can harvest energy from human motion to generate electricity, so TENGs have been widely applied in wearable electronic devices to replace traditional batteries. However, the surface of these TENGs is easily contaminated and breeds bacteria, which is a threat to human health. Here, we report an antibacterial composite film-based triboelectric nanogenerator (ACF-TENG) that uses Ag-exchanged zeolite (Ag-zeolite) and polypropylene (PP) composite film as the triboelectric layer. Adding a small amount of Ag-zeolite with excellent antibacterial properties can increase the dielectric permittivity and improve the surface charge density of composite films, which enhances the output performance of the ACF-TENG. The open-circuit voltage (VOC), short-circuit current (ISC), and transferred charge (QTr) of the ACF-TENG are about 193.3, 225.4, and 233.3% of those of a pure PP film-based TENG, respectively. Because of the silver in the Ag-zeolite, the ACF-TENG can effectively kill Escherichia coli and fungi. When used in insoles, the ACF-TENG can resist the athlete's foot fungus effectively and work as a power source to light up light-emitting diodes and charge capacitors. The ACF-TENG has wide application prospects in self-powered medical and healthcare electronics.

SELECTION OF CITATIONS
SEARCH DETAIL
...