Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chempluschem ; : e202400396, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38923325

ABSTRACT

Supramolecular structures are widespread in living system, which are usually spatiotemporally regulated by sophisticated metabolic processes to enable vital biological functions. Inspired by living system, tremendous efforts have been made to realize spatiotemporal control over the self-assembly of supramolecular materials in synthetic scenario by coupling chemical reaction with molecular self-assembly process. In this review, we focused on the works related to supramolecular hydrogels that are regulated in space and time using chemical reaction. Firstly, we summarized how spatially controlled self-assembly of supramolecular hydrogels can be achieved via chemical reaction-instructed self-assembly, and the application of such a self-assembly methodology in biotherapy was discussed as well. Second, we reviewed dynamic supramolecular hydrogels dictated by chemical reaction networks that can evolve their structures and properties against time. Third, we discussed the recent progresses in the control of the self-assembly of supramolecular hydrogels in both space and time though a reaction-diffusion-coupled self-assembly approach. Finally, we provided a perspective on the further development of spatiotemporally controlled supramolecular hydrogels using chemical reaction in the future.

2.
Angew Chem Int Ed Engl ; 62(43): e202310162, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37671694

ABSTRACT

Living organisms are capable of dynamically changing their structures for adaptive functions through sophisticated reaction-diffusion processes. Here we show how active supramolecular hydrogels with programmable lifetimes and macroscopic structures can be created by relying on a simple reaction-diffusion strategy. Two hydrogel precursors (poly(acrylic acid) PAA/CaCl2 and Na2 CO3 ) diffuse from different locations and generate amorphous calcium carbonate (ACC) nanoparticles at the diffusional fronts, leading to the formation of hydrogel structures driven by electrostatic interactions between PAA and ACC nanoparticles. Interestingly, the formed hydrogels are capable of autonomously disintegrating over time because of a delayed influx of electrostatic-interaction inhibitors (NaCl). The hydrogel growth process is well explained by a reaction-diffusion model which offers a theoretical means to program the dynamic growth of structured hydrogels. Furthermore, we demonstrate a conceptual access to dynamic information storage in soft materials using the developed reaction-diffusion strategy. This work may serve as a starting point for the development of life-like materials with adaptive structures and functionalities.

3.
ACS Appl Mater Interfaces ; 14(38): 43825-43832, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36103624

ABSTRACT

The movements of soft living tissues, such as muscle, have sparked a strong interest in the design of hydrogel actuators; however, so far, typical manmade examples still lag behind their biological counterparts, which usually function under nonequilibrium conditions through the consumption of high-energy biomolecules and show highly autonomous behaviors. Here, we report on self-resettable hydrogel actuators that are powered by a chemical fuel and can spontaneously return to their original states over time once the fuels are depleted. Self-resettable actuation originates from a chemical fuel-mediated transient change in the hydrophilicity of the hydrogel networks. The actuation extent and duration can be programmed by the fuel levels, and the self-resettable actuation process is highly recyclable through refueling. Furthermore, various proof-of-concept autonomous soft robots are created, resembling the movements of soft-bodied creatures in nature. This work may serve as a starting point for the development of lifelike soft robots with autonomous behaviors.


Subject(s)
Hydrogels , Robotics , Hydrogels/chemistry , Hydrophobic and Hydrophilic Interactions , Movement , Muscles
SELECTION OF CITATIONS
SEARCH DETAIL
...