Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
Front Microbiol ; 14: 1320264, 2023.
Article in English | MEDLINE | ID: mdl-38235429

ABSTRACT

The research aimed to study an Avian polyomavirus strain that was isolated in Shandong, China. To study the pathogenicity of APV in SPF chickens, and provide references for epidemiological research and disease prevention and control of APV. The genetic characterization of APV strain (termed APV-20) was analyzed and the pathogenicity of APV was investigated from two aspects: different age SPF chickens, and different infection doses. The results revealed that the APV-20 exhibits a nucleotide homology of 99% with the other three APV strains, and the evolution of APV In China was slow. In addition, the APV-20 infection in chickens caused depression, drowsiness, clustering, and fluffy feathers, but no deaths occurred in the infected chickens. The main manifestations of necropsy, and Hematoxylin and Eosin staining (HE) showed that one-day-old SPF chickens were the most susceptible, and there was a positive correlation between viral load and infection dose in the same tissue. This study showed that SPF chickens were susceptible to APV, and an experimental animal model was established. This study can provide a reference for the pathogenic mechanism of immune prevention and control of APV.

3.
Animals (Basel) ; 12(23)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36496909

ABSTRACT

To analyze the evolutionary characteristics of the highly contagious porcine epidemic diarrhea virus (PEDV) at the molecular and structural levels, we analyzed the complete genomes of 647 strains retrieved from the GenBank database. The results showed that the spike (S) gene exhibited larger dS (synonymous substitutions per synonymous site) values than other PEDV genes. In the selective pressure analysis, eight amino acid (aa) sites of the S protein showed strong signals of positive selection, and seven of them were located on the surface of the S protein (S1 domain), suggesting a high selection pressure of S protein. Topologically, the S gene is more representative of the evolutionary relationship at the genome-wide level than are other genes. Structurally, the evolutionary pattern is highly S1 domain-related. The haplotype networks of the S gene showed that the strains are obviously clustered geographically in the lineages corresponding to genotypes GI and GII. The alignment analysis on representative strains of the main haplotypes revealed three distinguishable nucleic acid sites among those strains, suggesting a putative evolutionary mechanism in PEDV. These findings provide several new fundamental insights into the evolution of PEDV and guidance for developing effective prevention countermeasures against PEDV.

4.
Vet Res ; 53(1): 65, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35986391

ABSTRACT

Current strategies for porcine reproductive and respiratory syndrome (PRRS) control are inadequate and mainly restricted to immunization using different PRRS virus (PPRSV) vaccines. Although there are no safety concerns, the poor performance of inactivated PRRSV vaccines has restricted their practical application. In this research, we employed the novel PRRSV-specific IgM monoclonal antibody (Mab)-PR5nf1 as a vaccine adjuvant for the formulation of a cocktail composed of inactivated PRRSV (KIV) and Mab-PR5nf1 along with a normal adjuvant to enhance PRRSV-KIV vaccine-mediated protection and further compared it with a normal KIV vaccine and modified live virus vaccine (MLV). After challenge with highly pathogenic (HP)-PRRSV, our results suggested that the overall survival rate (OSR) and cell-mediated immunity (CMI), as determined by serum IFN-γ quantification and IFN-γ ELISpot assay, were significantly improved by adding PRRSV-specific IgM to the PRRSV-KIV vaccine. It was also notable that both the OSR and CMI in the Mab-PR5nf1-adjuvanted KIV group were even higher than those in the MLV group, whereas the CMI response is normally poorly evoked by KIV vaccines or subunit vaccines. Compared with those in piglets immunized with the normal KIV vaccine, viral shedding and serum neutralizing antibody levels were also improved, and reduced viral shedding appeared to be a result of enhanced CMI caused by the inclusion of IgM as an adjuvant. In conclusion, our data provide not only a new formula for the development of an effective PRRSV-KIV vaccine for practical use but also a novel method for improving antigen-specific CMI induction by inactivated vaccines and subunit vaccines.


Subject(s)
Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Swine Diseases , Viral Vaccines , Adjuvants, Immunologic/pharmacology , Animals , Antibodies, Viral , Immunity, Cellular , Immunoglobulin M , Porcine Reproductive and Respiratory Syndrome/prevention & control , Swine , Vaccines, Attenuated , Vaccines, Inactivated , Vaccines, Subunit
5.
Antiviral Res ; 175: 104716, 2020 03.
Article in English | MEDLINE | ID: mdl-31981575

ABSTRACT

Porcine reproductive and respiratory syndrome (PRRS) is the most economically important infectious disease affecting the global swine industry, especially since vaccination has had limited impact on PRRSV prevention and control. In this study, the monoclonal antibody PR5nf1 (Mab-PR5nf1, IgM isotype) was shown to react with heterogeneous PRRSV isolates belonging to both PRRSV-1 and PRRSV-2 species. Pepsin digestion of Mab-PR5nf1 did not affect Mab binding to virions, as F(ab)2 fragments demonstrated the same reactivity as undigested Mab. Upon further investigation, Mab-PR5nf1 could neutralize all tested PRRSV isolates of both PRRSV-1 and PRRSV-2, suggesting it was a broadly neutralizing Mab against PRRSV. Interestingly, Mab-PR5nf1 appeared to recognize a specific virus epitope that required post-translational modification within the host cellular Golgi apparatus. Deglycosylation of PRRSV virions with PNGase F abolished Mab binding, suggesting that a novel Mab-binding epitope may exist that confers cross-protection against isolates of both PRRSV species. Additionally, immunization of mice with a cocktail of inactivated PRRSV virus and Mab-PR5nf1 enhanced cell-mediated immunity, as determined by IFN-γ ELIspot. In conclusion, this is the first report describing a novel Mab that recognizes a conserved epitope common to both PRRSV-1 and PRRSV-2 and provides valuable insights to guide future PRRSV vaccine development.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Epitopes/immunology , Immunity, Cellular , Immunoglobulin M/immunology , Porcine respiratory and reproductive syndrome virus/immunology , Animals , Binding Sites, Antibody , Cross Protection/immunology , Mice , Neutralization Tests , Porcine respiratory and reproductive syndrome virus/classification , Swine , Vaccination , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/immunology
6.
Antiviral Res ; 156: 10-20, 2018 08.
Article in English | MEDLINE | ID: mdl-29879459

ABSTRACT

Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically important infectious diseases impacting the swine industry worldwide. Prevention and control of PRRS have been problematic, as vaccination has achieved little success. MYH9 (encoded by the gene MYH9) is an essential cellular factor for PRRS virus (PRRSV) infection. The MYH9 C-terminal domain (designated PRA) interacts with viral glycoprotein 5 (GP5), a major PRRSV envelope protein. In this study, we investigated whether soluble PRA could serve as a novel blocking agent of PRRSV infection. Our data showed that preincubation of PRRSV with PRA inhibited virus infection of susceptible cells in a dose-dependent manner. Notably, PRA also exhibited broad-spectrum ability to inhibit infection with diverse strains of both PRRSV genotype 1 and 2. Analysis of the interaction between PRA and PRRSV GP5 revealed that PRA is able to capture PRRSV virions. In conclusion, our data suggest that PRA could serve as a novel broad-spectrum inhibitor of infection by heterogeneous PRRSV strains in vivo.


Subject(s)
Antiviral Agents/metabolism , Myosin Heavy Chains/metabolism , Porcine respiratory and reproductive syndrome virus/physiology , Recombinant Proteins/metabolism , Viral Envelope Proteins/metabolism , Virus Internalization , Animals , Antiviral Agents/isolation & purification , Cells, Cultured , Macrophages, Alveolar/virology , Myosin Heavy Chains/genetics , Protein Binding , Protein Domains , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Swine
7.
Front Microbiol ; 8: 1635, 2017.
Article in English | MEDLINE | ID: mdl-28894443

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV), one of the most economically significant pathogens worldwide, has caused numerous outbreaks during the past 30 years. PRRSV infection causes reproductive failure in sows and respiratory disease in growing and finishing pigs, leading to huge economic losses for the swine industry. This impact has become even more significant with the recent emergence of highly pathogenic PRRSV strains from China, further exacerbating global food security. Since new PRRSV variants are constantly emerging from outbreaks, current strategies for controlling PRRSV have been largely inadequate, even though our understanding of PRRSV virology, evolution and host immune response has been rapidly expanding. Meanwhile, practical experience has revealed numerous safety and efficacy concerns for currently licensed vaccines, such as shedding of modified live virus (MLV), reversion to virulence, recombination between field strains and MLV and failure to elicit protective immunity against heterogeneous virus. Therefore, an effective vaccine against PRRSV infection is urgently needed. Here, we systematically review recent advances in PRRSV vaccine development. Antigenic variations resulting from PRRSV evolution, identification of neutralizing epitopes for heterogeneous isolates, broad neutralizing antibodies against PRRSV, chimeric virus generated by reverse genetics, and novel PRRSV strains with interferon-inducing phenotype will be discussed in detail. Moreover, techniques that could potentially transform current MLV vaccines into a superior vaccine will receive special emphasis, as will new insights for future PRRSV vaccine development. Ultimately, improved PRRSV vaccines may overcome the disadvantages of current vaccines and minimize the PRRS impact to the swine industry.

SELECTION OF CITATIONS
SEARCH DETAIL
...