Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Nat Commun ; 15(1): 3698, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693102

ABSTRACT

Mouse models of autosomal dominant polycystic kidney disease (ADPKD) show that intact primary cilia are required for cyst growth following the inactivation of polycystin-1. The signaling pathways underlying this process, termed cilia-dependent cyst activation (CDCA), remain unknown. Using translating ribosome affinity purification RNASeq on mouse kidneys with polycystin-1 and cilia inactivation before cyst formation, we identify the differential 'CDCA pattern' translatome specifically dysregulated in kidney tubule cells destined to form cysts. From this, Glis2 emerges as a candidate functional effector of polycystin signaling and CDCA. In vitro changes in Glis2 expression mirror the polycystin- and cilia-dependent changes observed in kidney tissue, validating Glis2 as a cell culture-based indicator of polycystin function related to cyst formation. Inactivation of Glis2 suppresses polycystic kidney disease in mouse models of ADPKD, and pharmacological targeting of Glis2 with antisense oligonucleotides slows disease progression. Glis2 transcript and protein is a functional target of CDCA and a potential therapeutic target for treating ADPKD.


Subject(s)
Cilia , Disease Models, Animal , Polycystic Kidney, Autosomal Dominant , Signal Transduction , TRPP Cation Channels , Animals , Humans , Male , Mice , Cilia/metabolism , Kidney/metabolism , Kidney/pathology , Mice, Inbred C57BL , Mice, Knockout , Oligonucleotides, Antisense/pharmacology , Polycystic Kidney Diseases/metabolism , Polycystic Kidney Diseases/genetics , Polycystic Kidney Diseases/pathology , Polycystic Kidney, Autosomal Dominant/metabolism , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/pathology , Polycystic Kidney, Autosomal Dominant/drug therapy , TRPP Cation Channels/metabolism , TRPP Cation Channels/genetics
2.
Nat Commun ; 15(1): 4232, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762479

ABSTRACT

Toll-like receptor 9 (TLR9) recognizes bacterial, viral and self DNA and play an important role in immunity and inflammation. However, the role of TLR9 in obesity is less well-studied. Here, we generate B-cell-specific Tlr9-deficient (Tlr9fl/fl/Cd19Cre+/-, KO) B6 mice and model obesity using a high-fat diet. Compared with control mice, B-cell-specific-Tlr9-deficient mice exhibited increased fat tissue inflammation, weight gain, and impaired glucose and insulin tolerance. Furthermore, the frequencies of IL-10-producing-B cells and marginal zone B cells were reduced, and those of follicular and germinal center B cells were increased. This was associated with increased frequencies of IFNγ-producing-T cells and increased follicular helper cells. In addition, gut microbiota from the KO mice induced a pro-inflammatory state leading to immunological and metabolic dysregulation when transferred to germ-free mice. Using 16 S rRNA gene sequencing, we identify altered gut microbial communities including reduced Lachnospiraceae, which may play a role in altered metabolism in KO mice. We identify an important network involving Tlr9, Irf4 and Il-10 interconnecting metabolic homeostasis, with the function of B and T cells, and gut microbiota in obesity.


Subject(s)
B-Lymphocytes , Diet, High-Fat , Dysbiosis , Gastrointestinal Microbiome , Inflammation , Interleukin-10 , Mice, Knockout , Obesity , Toll-Like Receptor 9 , Animals , Obesity/immunology , Obesity/microbiology , Obesity/metabolism , Dysbiosis/immunology , Dysbiosis/microbiology , Toll-Like Receptor 9/metabolism , Toll-Like Receptor 9/genetics , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Inflammation/metabolism , Mice , Diet, High-Fat/adverse effects , Interleukin-10/metabolism , Male , Mice, Inbred C57BL , Disease Models, Animal , Interferon Regulatory Factors
3.
J Thorac Oncol ; 19(2): 240-251, 2024 02.
Article in English | MEDLINE | ID: mdl-37806385

ABSTRACT

INTRODUCTION: Patients with metastatic EGFR-mutant NSCLC inevitably have disease progression while on tyrosine kinase inhibitor (TKI) therapy. Co-occurring tumor suppressor gene (TSG) alterations have been associated with poor outcomes, however, detailed analyses of their impact on patient outcomes are limited. METHODS: Patients with EGFR-mutant NSCLC treated with EGFR TKIs who had tumor genomic profiling were included. Alterations in TP53 and five additional TSGs (RB1, NF1, ARID1A, BRCA1, and PTEN) were used to stratify the cohort into the following three subgroups: patients with tumors harboring a TP53 mutation plus a mutation in at least one additional TSG (TP53mut/TSGmut), those having a TP53 mutation without additional TSG mutations (TP53mut/TSGwt), and those with TP53wt. Patient characteristics and clinical outcomes were assessed in two independent cohorts. RESULTS: A total of 101 patients from the Yale Cancer Center and 182 patients from the American Association for Cancer Research Project GENIE database were included. In the Yale cohort, TP53 mutations were identified in 65 cases (64%), of which 23 were TP53mut/TSGmut and 42 were TP53mut/TSGwt. Although the presence of a TP53 mutation was associated with worse outcomes, the additional TSG alteration in TP53mut tumors identified a subset of patients associated with particularly aggressive disease and inferior clinical outcome in both the Yale and the GENIE cohorts. Specifically, in the Yale cohort for patients receiving first-line TKIs, those with TP53mut/TSGmut tumors had shorter progression-free survival (PFS) and overall survival (OS) than TP53mut/TSGwt (PFS: hazard ratio [HR] = 2.03, confidence interval [CI]: 1.12-3.69, p < 0.01, OS: HR = 1.58, CI: 0.82-3.04, p = 0.12) or TP53wt cases (PFS: HR 2.4, CI: 1.28-4.47, p < 0.001, OS: HR = 2.54, CI: 1.21-5.34, p < 0.005). Inferior outcomes in patients with TP53mut/TSGmut tumors were also found in those receiving osimertinib as second-line therapy. Similar findings were seen in patients in the GENIE cohort. CONCLUSIONS: Patients with TP53mut/TSGmut tumors represent a patient subgroup characterized by an aggressive disease phenotype and inferior outcomes on EGFR TKIs. This information is important for understanding the biological underpinnings of differential outcomes with TKI treatment and has implications for identifying patients who may benefit from additional therapeutic interventions beyond osimertinib monotherapy.


Subject(s)
Acrylamides , Aniline Compounds , Carcinoma, Non-Small-Cell Lung , Indoles , Lung Neoplasms , Pyrimidines , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Protein Kinase Inhibitors/therapeutic use , ErbB Receptors , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Genes, Tumor Suppressor , Mutation
4.
Clin Cancer Res ; 30(5): 998-1008, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38127300

ABSTRACT

PURPOSE: The spatial arrangement of lymphocytes in the tumor bed (e.g., immune infiltrated, immune excluded, immune desert) is expected to reflect distinct immune evasion mechanisms and to associate with immunotherapy outcomes. However, data supporting these associations are scant and limited by the lack of a clear definition for lymphocyte infiltration patterns and the subjective nature of pathology-based approaches. EXPERIMENTAL DESIGN: We used multiplexed immunofluorescence to study major tumor-infiltrating lymphocyte (TIL) subsets with single-cell resolution in baseline whole-tissue section samples from NSCLC patients treated with immune checkpoint inhibitors (ICI). The spatial TIL patterns were analyzed using a qualitative pathologist-based approach, and an objective analysis of TIL density ratios in tumor/stromal tissues. The association of spatial patterns with outcomes was studied for different TIL markers. RESULTS: The analysis of CD8+ TIL patterns using qualitative assessment identified prominent limitations including the presence of a broad spectrum of phenotypes within most tumors and limited association with outcomes. The utilization of an objective method to classify NSCLCs showed the existence of at least three subgroups with partial overlap with those defined using visual patterns. Using this strategy, a subset of cases with "immune excluded-like" tumors showed prominently worse outcomes, suggesting reduced sensitivity to ICI; however, these results need to be validated. The analysis for other TIL subsets showed different results, underscoring the relevance of the marker selected for spatial TIL pattern evaluation and opportunities for market integration. CONCLUSIONS: Our results identified major challenges associated with the qualitative spatial TIL pattern evaluation. We devised a novel objective strategy to overcome some of these limitations that has strong biomarker potential.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Lymphocytes, Tumor-Infiltrating , Clinical Relevance , Hypesthesia
5.
J Clin Invest ; 133(24)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37847555

ABSTRACT

The progression of proteinuric kidney diseases is associated with podocyte loss, but the mechanisms underlying this process remain unclear. Podocytes reenter the cell cycle to repair double-stranded DNA breaks. However, unsuccessful repair can result in podocytes crossing the G1/S checkpoint and undergoing abortive cytokinesis. In this study, we identified Pfn1 as indispensable in maintaining glomerular integrity - its tissue-specific loss in mouse podocytes resulted in severe proteinuria and kidney failure. Our results suggest that this phenotype is due to podocyte mitotic catastrophe (MC), characterized histologically and ultrastructurally by abundant multinucleated cells, irregular nuclei, and mitotic spindles. Podocyte cell cycle reentry was identified using FUCCI2aR mice, and we observed altered expression of cell-cycle associated proteins, such as p21, p53, cyclin B1, and cyclin D1. Podocyte-specific translating ribosome affinity purification and RNA-Seq revealed the downregulation of ribosomal RNA-processing 8 (Rrp8). Overexpression of Rrp8 in Pfn1-KO podocytes partially rescued the phenotype in vitro. Clinical and ultrastructural tomographic analysis of patients with diverse proteinuric kidney diseases further validated the presence of MC podocytes and reduction in podocyte PFN1 expression within kidney tissues. These results suggest that profilin1 is essential in regulating the podocyte cell cycle and its disruption leads to MC and subsequent podocyte loss.


Subject(s)
Kidney Diseases , Podocytes , Profilins , Animals , Humans , Mice , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Death/genetics , Kidney Diseases/metabolism , Kidney Glomerulus/pathology , Podocytes/pathology , Profilins/genetics , Proteinuria/pathology
6.
Bioinformatics ; 39(9)2023 09 02.
Article in English | MEDLINE | ID: mdl-37647638

ABSTRACT

SUMMARY: The next-generation sequencing brought opportunities for the diagnosis of genetic disorders due to its high-throughput capabilities. However, the majority of existing methods were limited to only sequencing candidate variants, and the process of linking these variants to a diagnosis of genetic disorders still required medical professionals to consult databases. Therefore, we introduce diseaseGPS, an integrated platform for the diagnosis of genetic disorders that combines both phenotype and genotype data for analysis. It offers not only a user-friendly GUI web application for those without a programming background but also scripts that can be executed in batch mode for bioinformatics professionals. The genetic and phenotypic data are integrated using the ACMG-Bayes method and a novel phenotypic similarity method, to prioritize the results of genetic disorders. diseaseGPS was evaluated on 6085 cases from Deciphering Developmental Disorders project and 187 cases from Shanghai Children's hospital. The results demonstrated that diseaseGPS performed better than other commonly used methods. AVAILABILITY AND IMPLEMENTATION: diseaseGPS is available to freely accessed at https://diseasegps.sjtu.edu.cn with source code at https://github.com/BioHuangDY/diseaseGPS.


Subject(s)
Computational Biology , Child , Humans , Bayes Theorem , China , Genotype , Phenotype
7.
Brief Bioinform ; 24(2)2023 03 19.
Article in English | MEDLINE | ID: mdl-36736372

ABSTRACT

Liver cancer is the third leading cause of cancer-related death worldwide, and hepatocellular carcinoma (HCC) accounts for a relatively large proportion of all primary liver malignancies. Among the several known risk factors, hepatitis B virus (HBV) infection is one of the important causes of HCC. In this study, we demonstrated that the HBV-infected HCC patients could be robustly classified into three clinically relevant subgroups, i.e. Cluster1, Cluster2 and Cluster3, based on consistent differentially expressed mRNAs and proteins, which showed better generalization. The proposed three subgroups showed different molecular characteristics, immune microenvironment and prognostic survival characteristics. The Cluster1 subgroup had near-normal levels of metabolism-related proteins, low proliferation activity and good immune infiltration, which were associated with its good liver function, smaller tumor size, good prognosis, low alpha-fetoprotein (AFP) levels and lower clinical stage. In contrast, the Cluster3 subgroup had the lowest levels of metabolism-related proteins, which corresponded with its severe liver dysfunction. Also, high proliferation activity and poor immune microenvironment in Cluster3 subgroup were associated with its poor prognosis, larger tumor size, high AFP levels, high incidence of tumor thrombus and higher clinical stage. The characteristics of the Cluster2 subgroup were between the Cluster1 and Cluster3 groups. In addition, MCM2-7, RFC2-5, MSH2, MSH6, SMC2, SMC4, NCPAG and TOP2A proteins were significantly upregulated in the Cluster3 subgroup. Meanwhile, abnormally high phosphorylation levels of these proteins were associated with high levels of DNA repair, telomere maintenance and proliferative features. Therefore, these proteins could be identified as potential diagnostic and prognostic markers. In general, our research provided a novel analytical protocol and insights for the robust classification, treatment and prevention of HBV-infected HCC.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis B , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Hepatitis B virus/metabolism , Liver Neoplasms/pathology , alpha-Fetoproteins/metabolism , Hepatitis B/complications , Tumor Microenvironment
8.
Nat Biotechnol ; 41(9): 1239-1255, 2023 09.
Article in English | MEDLINE | ID: mdl-36702900

ABSTRACT

The efficiency of targeted knock-in for cell therapeutic applications is generally low, and the scale is limited. In this study, we developed CLASH, a system that enables high-efficiency, high-throughput knock-in engineering. In CLASH, Cas12a/Cpf1 mRNA combined with pooled adeno-associated viruses mediate simultaneous gene editing and precise transgene knock-in using massively parallel homology-directed repair, thereby producing a pool of stably integrated mutant variants each with targeted gene editing. We applied this technology in primary human T cells and performed time-coursed CLASH experiments in blood cancer and solid tumor models using CD3, CD8 and CD4 T cells, enabling pooled generation and unbiased selection of favorable CAR-T variants. Emerging from CLASH experiments, a unique CRISPR RNA (crRNA) generates an exon3 skip mutant of PRDM1 in CAR-Ts, which leads to increased proliferation, stem-like properties, central memory and longevity in these cells, resulting in higher efficacy in vivo across multiple cancer models, including a solid tumor model. The versatility of CLASH makes it broadly applicable to diverse cellular and therapeutic engineering applications.


Subject(s)
Bacterial Proteins , Gene Editing , Humans , Bacterial Proteins/genetics , Gene Editing/methods , CD4-Positive T-Lymphocytes/metabolism , RNA , CRISPR-Cas Systems/genetics
9.
Genomics Proteomics Bioinformatics ; 21(1): 164-176, 2023 02.
Article in English | MEDLINE | ID: mdl-35569803

ABSTRACT

Comprehensive characterization of spatial and temporal gene expression patterns in humans is critical for uncovering the regulatory codes of the human genome and understanding the molecular mechanisms of human diseases. Ubiquitously expressed genes (UEGs) refer to the genes expressed across a majority of, if not all, phenotypic and physiological conditions of an organism. It is known that many human genes are broadly expressed across tissues. However, most previous UEG studies have only focused on providing a list of UEGs without capturing their global expression patterns, thus limiting the potential use of UEG information. In this study, we proposed a novel data-driven framework to leverage the extensive collection of ∼ 40,000 human transcriptomes to derive a list of UEGs and their corresponding global expression patterns, which offers a valuable resource to further characterize human transcriptome. Our results suggest that about half (12,234; 49.01%) of the human genes are expressed in at least 80% of human transcriptomes, and the median size of the human transcriptome is 16,342 genes (65.44%). Through gene clustering, we identified a set of UEGs, named LoVarUEGs, which have stable expression across human transcriptomes and can be used as internal reference genes for expression measurement. To further demonstrate the usefulness of this resource, we evaluated the global expression patterns for 16 previously predicted disallowed genes in islet beta cells and found that seven of these genes showed relatively more varied expression patterns, suggesting that the repression of these genes may not be unique to islet beta cells.


Subject(s)
Genome, Human , Transcriptome , Humans , Gene Expression Profiling/methods
10.
J Am Soc Nephrol ; 34(3): 433-450, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36414418

ABSTRACT

SIGNIFICANCE STATEMENT: The loss of integrity of the glomerular filtration barrier results in proteinuria that is often attributed to podocyte loss. Yet how damaged podocytes are lost remains unknown. Germline loss of murine podocyte-associated Hdac1 and Hdac2 ( Hdac1/2 ) results in proteinuria and collapsing glomerulopathy due to sustained double-stranded DNA damage. Hdac1/2 deletion induces loss of podocyte quiescence, cell cycle entry, arrest in G1, and podocyte senescence, observed both in vivo and in vitro . Through the senescence secretory associated phenotype, podocytes secrete proteins that contribute to their detachment. These results solidify the role of HDACs in cell cycle regulation and senescence, providing important clues in our understanding of how podocytes are lost following injury. BACKGROUND: Intact expression of podocyte histone deacetylases (HDAC) during development is essential for maintaining a normal glomerular filtration barrier because of its role in modulating DNA damage and preventing premature senescence. METHODS: Germline podocyte-specific Hdac1 and 2 ( Hdac1 / 2 ) double-knockout mice were generated to examine the importance of these enzymes during development. RESULTS: Podocyte-specific loss of Hdac1 / 2 in mice resulted in severe proteinuria, kidney failure, and collapsing glomerulopathy. Hdac1 / 2 -deprived podocytes exhibited classic characteristics of senescence, such as senescence-associated ß-galactosidase activity and lipofuscin aggregates. In addition, DNA damage, likely caused by epigenetic alterations such as open chromatin conformation, not only resulted in podocyte cell-cycle entry as shown in vivo by Ki67 expression and by FUCCI-2aR mice, but also in p21-mediated cell-cycle arrest. Through the senescence secretory associated phenotype, the damaged podocytes secreted proinflammatory cytokines, growth factors, and matrix metalloproteinases, resulting in subsequent podocyte detachment and loss, evidenced by senescent podocytes in urine. CONCLUSIONS: Hdac1 / 2 plays an essential role during development. Loss of these genes in double knockout mice leads to sustained DNA damage and podocyte senescence and loss.


Subject(s)
Cell Cycle , Histone Deacetylase 1 , Podocytes , Animals , Mice , Histone Deacetylase 1/metabolism , Mice, Knockout , Podocytes/metabolism , Proteinuria/etiology
11.
Genes (Basel) ; 13(10)2022 10 04.
Article in English | MEDLINE | ID: mdl-36292679

ABSTRACT

Autism spectrum disorder (ASD) is an early onset, developmental disorder whose genetic cause is heterogeneous and complex. In total, 70% of ASD cases are due to an unknown etiology. Among the monogenic causes of ASD, fragile X syndrome (FXS) accounts for 2-4% of ASD cases, and 60% of individuals with FXS present with ASD. Epigenetic changes, specifically DNA methylation, which modulates gene expression levels, play a significant role in the pathogenesis of both disorders. Thus, in this study, using the Human Methylation EPIC Bead Chip, we examined the global DNA methylation profiles of biological samples derived from 57 age-matched male participants (2-6 years old), including 23 subjects with ASD, 23 subjects with FXS with ASD (FXSA) and 11 typical developing (TD) children. After controlling for technical variation and white blood cell composition, using the conservatory threshold of the false discovery rate (FDR ≤ 0.05), in the three comparison groups, TD vs. AD, TD vs. FXSA and ASD vs. FXSA, we identified 156, 79 and 3100 differentially methylated sites (DMS), and 14, 13 and 263 differential methylation regions (DMRs). Interestingly, several genes differentially methylated among the three groups were among those listed in the SFARI Gene database, including the PAK2, GTF2I and FOXP1 genes important for brain development. Further, enrichment analyses identified pathways involved in several functions, including synaptic plasticity. Our preliminary study identified a significant role of altered DNA methylation in the pathology of ASD and FXS, suggesting that the characterization of a DNA methylation signature may help to unravel the pathogenicity of FXS and ASD and may help the development of an improved diagnostic classification of children with ASD and FXSA. In addition, it may pave the way for developing therapeutic interventions that could reverse the altered methylome profile in children with neurodevelopmental disorders.


Subject(s)
Autism Spectrum Disorder , Fragile X Syndrome , Transcription Factors, TFIII , Child , Humans , Male , Child, Preschool , Fragile X Syndrome/genetics , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , DNA Methylation/genetics , Epigenesis, Genetic/genetics , Transcription Factors, TFIII/genetics , Transcription Factors, TFIII/metabolism , Repressor Proteins/genetics , Forkhead Transcription Factors/genetics
12.
J Clin Invest ; 132(19)2022 10 03.
Article in English | MEDLINE | ID: mdl-36189793

ABSTRACT

The TET family of dioxygenases promote DNA demethylation by oxidizing 5-methylcytosine to 5-hydroxymethylcytosine (5hmC). Hypothalamic agouti-related peptide-expressing (AGRP-expressing) neurons play an essential role in driving feeding, while also modulating nonfeeding behaviors. Besides AGRP, these neurons produce neuropeptide Y (NPY) and the neurotransmitter GABA, which act in concert to stimulate food intake and decrease energy expenditure. Notably, AGRP, NPY, and GABA can also elicit anxiolytic effects. Here, we report that in adult mouse AGRP neurons, CRISPR-mediated genetic ablation of Tet3, not previously known to be involved in central control of appetite and metabolism, induced hyperphagia, obesity, and diabetes, in addition to a reduction of stress-like behaviors. TET3 deficiency activated AGRP neurons, simultaneously upregulated the expression of Agrp, Npy, and the vesicular GABA transporter Slc32a1, and impeded leptin signaling. In particular, we uncovered a dynamic association of TET3 with the Agrp promoter in response to leptin signaling, which induced 5hmC modification that was associated with a chromatin-modifying complex leading to transcription inhibition, and this regulation occurred in both the mouse models and human cells. Our results unmasked TET3 as a critical central regulator of appetite and energy metabolism and revealed its unexpected dual role in the control of feeding and other complex behaviors through AGRP neurons.


Subject(s)
Anti-Anxiety Agents , Dioxygenases , 5-Methylcytosine/metabolism , Agouti-Related Protein/genetics , Agouti-Related Protein/metabolism , Animals , Anti-Anxiety Agents/pharmacology , Chromatin/metabolism , Dioxygenases/genetics , Dioxygenases/metabolism , Humans , Hypothalamus/metabolism , Leptin/metabolism , Mice , Neurons/metabolism , Neuropeptide Y/metabolism , gamma-Aminobutyric Acid/genetics , gamma-Aminobutyric Acid/metabolism , gamma-Aminobutyric Acid/pharmacology
13.
PLoS One ; 17(6): e0269777, 2022.
Article in English | MEDLINE | ID: mdl-35700163

ABSTRACT

BACKGROUND: Whether there are sex differences in hemodynamic profiles among people with elevated blood pressure is not well understood and could guide personalization of treatment. METHODS AND RESULTS: We described the clinical and hemodynamic characteristics of adults with elevated blood pressure in China using impedance cardiography. We included 45,082 individuals with elevated blood pressure (defined as systolic blood pressure of ≥130 mmHg or a diastolic blood pressure of ≥80 mmHg), of which 35.2% were women. Overall, women had a higher mean systolic blood pressure than men (139.0 [±15.7] mmHg vs 136.8 [±13.8] mmHg, P<0.001), but a lower mean diastolic blood pressure (82.6 [±9.0] mmHg vs 85.6 [±8.9] mmHg, P<0.001). After adjusting for age, region, and body mass index, women <50 years old had lower systemic vascular resistance index (beta-coefficient [ß] -31.7; 95% CI: -51.2, -12.2) and higher cardiac index (ß 0.07; 95% CI: 0.04, 0.09) than men of their same age group, whereas among those ≥50 years old women had higher systemic vascular resistance index (ß 120.4; 95% CI: 102.4, 138.5) but lower cardiac index (ß -0.15; 95% CI: -0.16, -0.13). Results were consistent with a propensity score matching sensitivity analysis, although the magnitude of the SVRI difference was lower and non-significant. However, there was substantial overlap between women and men in the distribution plots of these variables, with overlapping areas ranging from 78% to 88%. CONCLUSIONS: Our findings indicate that there are sex differences in hypertension phenotype, but that sex alone is insufficient to infer an individual's profile.


Subject(s)
Cardiography, Impedance , Hypertension , Blood Pressure/physiology , Diastole , Female , Hemodynamics , Humans , Male
14.
Open Heart ; 8(2)2021 09.
Article in English | MEDLINE | ID: mdl-34580169

ABSTRACT

OBJECTIVE: To test the effectiveness of an impedance cardiography (ICG) guided treatment strategy on improving blood pressure (BP) control in real-world clinical practice. DESIGN: A single-centre, pragmatic randomised trial. SETTING: A hypertension clinic of the Peking University People's Hospital in Beijing, China. PARTICIPANTS: Adults who sought outpatient care for hypertension in the hypertension clinic at the Peking University People's Hospital between June and December 2019. INTERVENTIONS: A computerised clinical decision support of recommending treatment choices to providers based on patients' haemodynamic profiles measured by ICG. MAIN OUTCOME MEASURES: Changes in systolic BP (SBP) and diastolic BP (DBP) levels at the follow-up visit 4-12 weeks after baseline. Secondary outcomes included achievement of BP goal of <140/90 mm Hg and the changes in BP by baseline BP, age, sex and body mass index (BMI). RESULTS: A total of 102 adults (mean age was 54±14 years; 41% were women) completed the study. The mean baseline SBP was 150.9 (SD of 11.5) mm Hg and mean baseline DBP was 91.1 (11.3) mm Hg. At the follow-up visit, the mean SBP and DBP decreased by 19.9 and 11.3 mm Hg in the haemodynamic group, as compared with 12.0 and 4.9 mm Hg in the standard care group (p value for difference between groups <0.001). The proportion of patients achieving BP goal of <140/90 mm Hg in the haemodynamic group was 67%, as compared with 41% in the standard care group (p=0.017). The haemodynamic group had a larger effect on BP reduction consistently across subgroups by age, sex, BMI and baseline BP. CONCLUSIONS: An ICG-guided treatment strategy led to greater reductions in BP levels than were observed with standard care in a real-world population of outpatients with hypertension. There is a need for further validation of this strategy for improving blood pressure treatment selection. TRIAL REGISTRATION NUMBER: NCT04715698.


Subject(s)
Antihypertensive Agents/therapeutic use , Blood Pressure/physiology , Cardiography, Impedance/methods , Clinical Decision-Making , Hypertension/drug therapy , Practice Guidelines as Topic , Therapy, Computer-Assisted/standards , Adolescent , Adult , Aged , Aged, 80 and over , Blood Pressure/drug effects , China/epidemiology , Female , Follow-Up Studies , Humans , Hypertension/epidemiology , Hypertension/physiopathology , Incidence , Male , Middle Aged , Retrospective Studies , Time Factors , Treatment Outcome , Young Adult
15.
Cell Mol Immunol ; 18(2): 328-338, 2021 02.
Article in English | MEDLINE | ID: mdl-33432061

ABSTRACT

Innate immunity mediated by Toll-like receptors (TLRs), which can recognize pathogen molecular patterns, plays a critical role in type 1 diabetes development. TLR7 is a pattern recognition receptor that senses single-stranded RNAs from viruses and host tissue cells; however, its role in type 1 diabetes development remains unclear. In our study, we discovered that Tlr7-deficient (Tlr7-/-) nonobese diabetic (NOD) mice, a model of human type 1 diabetes, exhibited a significantly delayed onset and reduced incidence of type 1 diabetes compared with Tlr7-sufficient (Tlr7+/+) NOD mice. Mechanistic investigations showed that Tlr7 deficiency significantly altered B-cell differentiation and immunoglobulin production. Moreover, Tlr7-/- NOD B cells were found to suppress diabetogenic CD4+ T-cell responses and protect immunodeficient NOD mice from developing diabetes induced by diabetogenic T cells. In addition, we found that Tlr7 deficiency suppressed the antigen-presenting functions of B cells and inhibited cytotoxic CD8+ T-cell activation by downregulating the expression of both nonclassical and classical MHC class I (MHC-I) molecules on B cells. Our data suggest that TLR7 contributes to type 1 diabetes development by regulating B-cell functions and subsequent interactions with T cells. Therefore, therapeutically targeting TLR7 may prove beneficial for disease protection.


Subject(s)
Antigen Presentation/immunology , B-Lymphocytes/immunology , Cell Differentiation , Diabetes Mellitus, Type 1/prevention & control , Immunity, Innate , Membrane Glycoproteins/physiology , T-Lymphocytes, Cytotoxic/immunology , Toll-Like Receptor 7/physiology , Animals , Diabetes Mellitus, Type 1/etiology , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/pathology , Female , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Knockout
16.
Support Care Cancer ; 29(6): 3173-3182, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33078326

ABSTRACT

PURPOSE: Recent evidence supports a key role of gut microbiome in brain health. We conducted a pilot study to assess associations of gut microbiome with cancer-related fatigue and explore the associations with DNA methylation changes. METHODS: Self-reported Multidimensional Fatigue Inventory and stool samples were collected at pre-radiotherapy and one-month post-radiotherapy in patients with head and neck cancer. Gut microbiome data were obtained by sequencing the 16S ribosomal ribonucleic acid gene. DNA methylation changes in the blood were assessed using Illumina Methylation EPIC BeadChip. RESULTS: We observed significantly different gut microbiota patterns among patients with high vs. low fatigue across time. This pattern was characterized by low relative abundance in short-chain fatty acid-producing taxa (family Ruminococcaceae, genera Subdoligranulum and Faecalibacterium; all p < 0.05), with high abundance in taxa associated with inflammation (genera Family XIII AD3011 and Erysipelatoclostridium; all p < 0.05) for high-fatigue group. We identified nine KEGG Orthology pathways significantly different between high- vs. low-fatigue groups over time (all p < 0.001), including pathways related to fatty acid synthesis and oxidation, inflammation, and brain function. Gene set enrichment analysis (GSEA) was performed on the top differentially methylated CpG sites that were associated with the taxa and fatigue. All biological processes from the GSEA were related to immune responses and inflammation (FDR < 0.05). CONCLUSIONS: Our results suggest different patterns of the gut microbiota in cancer patients with high vs. low fatigue. Results from functional pathways and DNA methylation analyses indicate that inflammation is likely to be the major driver in the gut-brain axis for cancer-related fatigue.


Subject(s)
Epigenesis, Genetic/genetics , Fatigue/etiology , Gastrointestinal Microbiome/physiology , Neoplasms/complications , Fatigue/pathology , Female , Humans , Male , Middle Aged , Neoplasms/genetics , Pilot Projects
17.
Cancers (Basel) ; 12(9)2020 Sep 06.
Article in English | MEDLINE | ID: mdl-32899975

ABSTRACT

Cancer patients experience a cluster of co-occurring psychoneurological symptoms (PNS) related to cancer treatments. The gut microbiome may affect severity of the PNS via neural, immune, and endocrine signaling pathways. However, the link between the gut microbiome and PNS has not been well investigated in cancer patients, including those with head and neck cancers (HNCs). This pilot study enrolled 13 patients with HNCs, who reported PNS using the Patient-Reported Outcomes version of the Common Terminology Criteria for Adverse Events (CTCAEs). Stool specimens were collected to analyze patients' gut microbiome. All data were collected pre- and post-radiation therapy (RT). Associations between the bacterial abundances and the PNS clusters were analyzed using the linear discriminant analysis effect size; functional pathway analyses of 16S rRNA V3-V4 bacterial communities were conducted using Tax4fun. The high PNS cluster had a greater decrease in microbial evenness than the low PNS cluster from pre- to post-RT. The high and low PNS clusters showed significant differences using weighted UniFrac distance. Those individuals with the high PNS cluster were more likely to have higher abundances in phylum Bacteroidetes, order Bacteroidales, class Bacteroidia, and four genera (Ruminiclostridium9, Tyzzerella, Eubacterium_fissicatena, and DTU089), while the low PNS cluster had higher abundances in family Acidaminococcaceae and three genera (Lactococcus, Phascolarctobacterium, and Desulfovibrio). Both glycan metabolism (Lipopolysaccharide biosynthesis) and vitamin metabolism (folate biosynthesis and lipoic acid metabolism) were significantly different between the high and low PNS clusters pre- and post-RT. Our preliminary data suggest that the diversity and abundance of the gut microbiome play a potential role in developing PNS among cancer patients.

18.
Front Mol Biosci ; 7: 115, 2020.
Article in English | MEDLINE | ID: mdl-32733913

ABSTRACT

Phenylketonuria (PKU) is a common genetic metabolic disorder that affects the infant's nerve development and manifests as abnormal behavior and developmental delay as the child grows. Currently, a triple-quadrupole mass spectrometer (TQ-MS) is a common high-accuracy clinical PKU screening method. However, there is high false-positive rate associated with this modality, and its reduction can provide a diagnostic and economic benefit to both pediatric patients and health providers. Machine learning methods have the advantage of utilizing high-dimensional and complex features, which can be obtained from the patient's metabolic patterns and interrogated for clinically relevant knowledge. In this study, using TQ-MS screening data of more than 600,000 patients collected at the Newborn Screening Center of Shanghai Children's Hospital, we derived a dataset containing 256 PKU-suspected cases. We then developed a machine learning logistic regression analysis model with the aim to minimize false-positive rates in the results of the initial PKU test. The model attained a 95-100% sensitivity, the specificity was improved 53.14%, and positive predictive value increased from 19.14 to 32.16%. Our study shows that machine learning models may be used as a pediatric diagnosis aid tool to reduce the number of suspected cases and to help eliminate patient recall. Our study can serve as a future reference for the selection and evaluation of computational screening methods.

19.
Nat Med ; 26(5): 688-692, 2020 05.
Article in English | MEDLINE | ID: mdl-32405062

ABSTRACT

Serum interleukin-8 (IL-8) levels and tumor neutrophil infiltration are associated with worse prognosis in advanced cancers. Here, using a large-scale retrospective analysis, we show that elevated baseline serum IL-8 levels are associated with poor outcome in patients (n = 1,344) with advanced cancers treated with nivolumab and/or ipilimumab, everolimus or docetaxel in phase 3 clinical trials, revealing the importance of assessing serum IL-8 levels in identifying unfavorable tumor immunobiology and as an independent biomarker in patients receiving immune-checkpoint inhibitors.


Subject(s)
Antineoplastic Agents, Immunological/therapeutic use , Biomarkers, Pharmacological/blood , Interleukin-8/blood , Neoplasms/drug therapy , Neutrophils/pathology , Protein Kinase Inhibitors/therapeutic use , Antibodies, Monoclonal/therapeutic use , Biomarkers, Tumor/blood , Cell Cycle Checkpoints/drug effects , Cell Cycle Checkpoints/immunology , Cohort Studies , Female , Humans , Male , Neoplasms/blood , Neoplasms/diagnosis , Neoplasms/mortality , Neutrophil Infiltration/drug effects , Prognosis , Retrospective Studies , Survival Analysis , Treatment Failure , Tumor Microenvironment/immunology , Up-Regulation
20.
J Am Geriatr Soc ; 68(7): 1520-1528, 2020 07.
Article in English | MEDLINE | ID: mdl-32212398

ABSTRACT

BACKGROUND: Age is known to be associated with the prevalence and pathophysiology of hypertension. However, there is little information on whether age stands as a good proxy for the specific hemodynamic profile of an individual with elevated blood pressure (BP), which could be important in the selection of therapy. DESIGN: This is a cross-sectional study. SETTING: People who underwent a noninvasive, hemodynamic assessment using impedance cardiography at 51 sites of iKang Health Checkup Centers throughout China between January 2012 and October 2018. PARTICIPANTS: We included 116,851 individuals, aged 20 to 80 years. MAIN OUTCOMES AND MEASURES: Relationship between age and hemodynamic parameters (cardiac index, systemic vascular resistance index [SVRI]), among individuals with elevated BP (systolic BP ≥130 mm Hg or diastolic BP ≥80 mm Hg). RESULTS: Final study population included 45,082 individuals with elevated BP: 29,194 men and 15,888 women with a mean (±SD) age of 48 (±13) and 54 (±12) years, respectively. Cardiac index was negatively associated with age with an adjusted, per decade decrease of 0.17 (95% confidence interval [CI] = 0.17-0.18) L/min/m2 in men and 0.24 (95% CI = 0.23-0.25) L/min/m2 in women. SVRI was positively associated with age with an adjusted, per-decade increase of 174.2 (95% CI = 168.8-179.7) dynes·s·cm-5 ·m2 in men and 214.1 (95% CI = 204.3-223.8) dynes·s·cm-5 ·m2 in women. However, there was substantial overlap in the distribution of these parameters across different age groups in both sexes. CONCLUSIONS: In this large study, we observed that cardiac index decreased and SVRI increased with age among individuals with elevated BP. Even though there was a general trend with age, we observed heterogeneity within age strata, suggesting that age alone is inadequate to indicate the hemodynamic profile for an individual. J Am Geriatr Soc 68:1520-1528, 2020.


Subject(s)
Aging , Hemodynamics/physiology , Hypertension/physiopathology , Blood Pressure/physiology , Cardiography, Impedance , China , Cross-Sectional Studies , Female , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...