Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 13: 943707, 2022.
Article in English | MEDLINE | ID: mdl-35992698

ABSTRACT

The highly virulent and antigenic variant of Pseudorabies virus (PRV) that emerged from classical Bartha-K61-vaccinated pig herds has caused substantial economic losses to the swine industry in China since 2011. A safe and more effective vaccine is most desirable. In this study, a gE/TK gene-deficient PRV, namely, HD/c, was constructed based on a PRV type II DX strain isolated from a commercial vaccine-immunized farm and the HD/c-based inactivated vaccine was formulated and evaluated for its safety, immunogenicity, and protective efficacy in mice and piglets. The resulting PRV HD/c strain has a similar growth curve to the parental DX strain. After vaccination, the inactivated HD/c vaccine did not cause any visible gross pathological or histopathological changes in the tissues of mice and piglets and provided rapid and potent protection against the challenge of the classical and variant PRVs at day 21 post-vaccination in mice. A single immunization of 108.5TCID50 inactivated PRV HD/c strain-elicited robust immunity with high titer of neutralizing antibody and provided complete protection from the lethal challenge of PRV DX strain in piglets. These results indicated that the inactivated PRV HD/c vaccine with the deletion of gE/TK genes was a safe and effective PRV vaccine candidate for the control of PRV.

2.
Article in English | MEDLINE | ID: mdl-28491824

ABSTRACT

Rabies virus (RABV) is the cause of rabies, and is associated with severe neurological symptoms, high mortality rate, and a serious threat to human health. Although cellular tubulin has recently been identified to be incorporated into RABV particles, the effects of RABV infection on the microtubule cytoskeleton remain poorly understood. In this study, we show that RABV infection induces microtubule depolymerization as observed by confocal microscopy, which is closely associated with the formation of the filamentous network of the RABV M protein. Depolymerization of microtubules significantly increases viral RNA synthesis, while the polymerization of microtubules notably inhibits viral RNA synthesis and prevents the viral M protein from inducing the formation of the filamentous network. Furthermore, the histone deacetylase 6 (HDAC6) expression level progressively increases during RABV infection, and the inhibition of HDAC6 deacetylase activity significantly decreases viral RNA synthesis. In addition, the expression of viral M protein alone was found to significantly upregulate HDAC6 expression, leading to a substantial reduction in its substrate, acetylated α-tubulin, eventually resulting in microtubule depolymerization. These results demonstrate that HDAC6 plays a positive role in viral transcription and replication by inducing microtubule depolymerization during RABV infection.


Subject(s)
Histone Deacetylase 6/metabolism , Microtubules/metabolism , RNA, Viral/biosynthesis , Rabies virus/metabolism , Rabies/virology , Up-Regulation , Acetylation , Animals , Cell Line , Cell Survival , Cricetinae , Cytoskeleton , Dimethyl Sulfoxide/pharmacology , Gene Expression Regulation, Viral , HEK293 Cells , Histone Deacetylase 6/biosynthesis , Humans , Mice , Microscopy, Confocal , Nucleic Acid Synthesis Inhibitors/pharmacology , Paclitaxel/pharmacology , Rabies virus/genetics , Rabies virus/pathogenicity , Transcriptional Activation , Tubulin , Viral Matrix Proteins/genetics , Viral Matrix Proteins/metabolism
3.
Arch Virol ; 162(4): 1025-1029, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27990566

ABSTRACT

Qinghai Lake is a major migratory-bird breeding site that has experienced several highly pathogenic avian influenza virus (AIV) epizootics. Plateau pikas (Ochotona curzoniae) have previously been implicated in the ecology of avian influenza virus in this region. We first isolated an H9N2 AIV (A/Pika/Menyuan/01/2008) from plateau pikas between November 2008 and October 2009. Sequence analysis showed that the A/Pika/Menyuan/01/2008 AIV was closely related to the H9N2 AIV strain (A/Turkey/Wisconsin/ 1/1966). Our findings suggested that plateau pikas may contribute to AIV epidemiology in the Qinghai Lake region.


Subject(s)
Bird Diseases/transmission , Disease Reservoirs/veterinary , Influenza A Virus, H9N2 Subtype/genetics , Influenza A Virus, H9N2 Subtype/isolation & purification , Lagomorpha/virology , Animals , Animals, Wild/virology , Bird Diseases/virology , Chick Embryo , China , Disease Reservoirs/virology , Disease Vectors , Influenza A Virus, H9N2 Subtype/classification , Lakes , Phylogeny , Viral Proteins/genetics
4.
Infect Genet Evol ; 39: 249-257, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26845346

ABSTRACT

Japanese encephalitis (JE) is a mosquito borne viral disease, caused by Japanese encephalitis virus (JEV) infection producing severe neuroinflammation in the central nervous system (CNS) with the associated disruption of the blood brain barrier. MicroRNAs (miRNAs) are a family of 21-24 nt small non-coding RNAs that play important post-transcriptional regulatory roles in gene expression and have critical roles in virus pathogenesis. We examined the potential roles of miRNAs in JEV-infected suckling mice brains and found that JEV infection changed miRNA expression profiles when the suckling mice began showing nervous symptoms. A total of 1062 known and 71 novel miRNAs were detected in JEV-infected group, accompanied with 1088 known and 75 novel miRNAs in mock controls. Among these miRNAs, one novel and 25 known miRNAs were significantly differentially expressed, including 18 up-regulated and 8 down-regulated miRNAs which were further confirmed by real-time PCR. Gene ontology (GO) and signaling pathway analysis of the predicted target mRNAs of the modulated miRNAs showed that they are correlated with the regulation of apoptosis, neuron differentiation, antiviral immunity and infiltration of mouse brain, and the validated targets of 12 differentially expressed miRNAs were enriched for the regulation of cell programmed death, proliferation, transcription, muscle organ development, erythrocyte differentiation, gene expression, plasma membrane and protein domain specific binding. KEGG analysis further reveals that the validated target genes were involved in the Pathways in cancer, Neurotrophin signaling pathway, Toll like receptor signaling pathway, Endometrial cancer and Jak-STAT signaling pathway. We constructed the interaction networks of miRNAs and their target genes according to GO terms and KEGG pathways and the expression levels of several target genes were examined. Our data provides a valuable basis for further studies on the regulatory roles of miRNAs in JE pathogenesis.


Subject(s)
Brain/metabolism , Brain/virology , Encephalitis Virus, Japanese , Encephalitis, Japanese/genetics , Encephalitis, Japanese/virology , Gene Expression Profiling , MicroRNAs/genetics , Transcriptome , Animals , Brain/pathology , Cell Line , Computational Biology/methods , Disease Models, Animal , Encephalitis, Japanese/pathology , Gene Expression Regulation , Gene Regulatory Networks , High-Throughput Nucleotide Sequencing , Mice , RNA Interference , RNA, Messenger/genetics , Sequence Analysis, RNA
5.
J Biol Chem ; 287(6): 3798-807, 2012 Feb 03.
Article in English | MEDLINE | ID: mdl-22184121

ABSTRACT

The bursa of Fabricius, the acknowledged central humoral immune organ, plays a vital role in B lymphocyte differentiation. However, there are few reports of the molecular basis of the mechanism on immune induction and potential antitumor activity of bursal-derived peptides. In this paper, a novel bursal-derived pentapeptide-II (BPP-II, MTLTG) was isolated and exerted immunomodulatory functions on antibody responses in vitro. Gene microarray analyses demonstrated that BPP-II regulated expression of 2478 genes in a mouse-derived hybridoma cell line. Immune-related gene ontology functional procedures were employed for further functional analysis. Furthermore, the majority of BPP-II-regulated pathways were associated with immune responses and tumor processes. Moreover, BPP-II exhibited immunomodulatory effects on antigen-specific immune responses in vivo, including enhancement of avian influenza virus (H9N2 subtype)-specific antibody and cytokine production and modification of T cell immunophenotypes and lymphocyte proliferation. Finally, BPP-II triggered p53 expression and stabilization and selectively inhibited tumor cell proliferation. These data identified the multifunctional factor, BPP-II, as a novel biomaterial representing an important linking between the humoral central immune system and immune induction, including antitumor. Information generated in this study elucidates further the mechanisms involved in humoral immune system and represents the potential basis of effective immunotherapeutic strategies for treating human tumors and immune improvement.


Subject(s)
Immunologic Factors/pharmacology , Influenza A Virus, H9N2 Subtype/metabolism , Neoplasms/immunology , Oligopeptides/pharmacology , T-Lymphocytes/immunology , Animals , Antibodies, Viral/immunology , Bursa of Fabricius/chemistry , Bursa of Fabricius/immunology , Cell Line, Tumor , Chickens/immunology , Cytokines/immunology , Female , Humans , Immunologic Factors/chemistry , Immunologic Factors/immunology , Immunologic Factors/isolation & purification , Mice , Mice, Inbred BALB C , Neoplasms/drug therapy , Neoplasms/pathology , Oligopeptides/chemistry , Oligopeptides/immunology , Oligopeptides/isolation & purification , Tumor Suppressor Protein p53/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...