Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Adv Mater ; : e2314175, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38635920

ABSTRACT

Sorption-based atmospheric water harvesting (SAWH) is a promising technology to alleviate freshwater scarcity. Recently, hygroscopic salt-hydrogel composites (HSHCs) have emerged as attractive candidates with their high water uptake, versatile designability, and scale-up fabrication. However, achieving high-performance SAWH applications for HSHCs has been challenging because of their sluggish kinetics, attributed to their limited mass transport properties. Herein, a universal network engineering of hydrogels using a cryogelation method is presented, significantly improving the SAWH kinetics of HSHCs. As a result of the entangled mesh confinements formed during cryogelation, a stable macroporous topology is attained and maintained within the obtained entangled-mesh hydrogels (EMHs), leading to significantly enhanced mass transport properties compared to conventional dense hydrogels (CDHs). With it, corresponding hygroscopic EMHs (HEMHs) simultaneously exhibit faster moisture sorption and solar-driven water desorption. Consequently, a rapid-cycling HEMHs-based harvester delivers a practical freshwater production of 2.85 Lwater kgsorbents -1 day-1 via continuous eight sorption/desorption cycles, outperforming other state-of-the-art hydrogel-based sorbents. Significantly, the generalizability of this strategy is validated by extending it to other hydrogels used in HSHCs. Overall, this work offers a new approach to efficiently address long-standing challenges of sluggish kinetics in current HSHCs, promoting them toward the next-generation SAWH applications.

2.
Clin. transl. oncol. (Print) ; 26(3): 623-629, mar. 2024.
Article in English | IBECS | ID: ibc-230792

ABSTRACT

Background Lung cancer is the primary cause of cancer-related mortality worldwide. Hemoglobin (Hb) represents the most widely utilized test parameter in clinical settings. However, few articles have examined the causal relationship between Hb concentration and lung cancer incidence. Methods Mendelian randomization (MR) was first conducted to investigate the potential causality between Hb and lung cancer. Sensitivity analyses were applied to validate the reliability of MR results. Then, the National Health and Nutrition Examination Survey (NHANES) database was used to verify the effect of Hb on the prognosis of lung cancer. Results The MR analysis demonstrated that Hb was casually associated with the decreased risk of lung cancer in the European population (ORIVW 0.84, 95% CI 0.75–0.95, p = 0.006; ORWeighted-median 0.78, 95% CI 0.65–0.94, p = 0.008; ORMR-Egger 0.82, 95% CI 0.64–1.04, p = 0.11). The results from the NHANES database showed that a high value of Hb was associated with better outcomes for patients with lung cancer (HR 0.45, 95% CI 0.26–0.79, p = 1.6E−03). Conclusions Our study provides further evidence for the relationship between Hb levels and lung cancer, highlighting the potential significance of Hb as a biomarker for predicting the risk and prognosis of lung cancer (AU)


Subject(s)
Humans , Lung Neoplasms/blood , Lung Neoplasms/genetics , Hemoglobins , Genome-Wide Association Study , Mendelian Randomization Analysis , Nutrition Surveys , Reproducibility of Results
3.
Thorac Cancer ; 15(8): 630-641, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38323374

ABSTRACT

BACKGROUND: Increasing evidence indicates that four and a half LIM domains 2 (FHL2) plays a crucial role in the progression of various cancers. However, the biological functions and molecular mechanism of FHL2 in lung adenocarcinoma (LUAD) remain unclear. METHODS: We evaluated the prognostic value of FHL2 in LUAD using public datasets and further confirmed its prognostic value with our clinical data. The biological functions of FHL2 in LUAD were evaluated by in vitro and in vivo experiments. Pathway analysis and rescue experiments were subsequently performed to explore the molecular mechanism by which FHL2 promoted the progression of LUAD. RESULTS: FHL2 was upregulated in LUAD tissues compared to adjacent normal lung tissues, and FHL2 overexpression was correlated with unfavorable outcomes in patients with LUAD. FHL2 knockdown significantly suppressed the proliferation, migration and invasion of LUAD cells, while FHL2 overexpression had the opposite effect. Mechanistically, FHL2 upregulated the PI3K/AKT/mTOR pathway and subsequently inhibited autophagy in LUAD cells. The effects FHL2 on the proliferation, migration and invasion of LUAD cells are dependent on the inhibition of autophagy, as of induction autophagy attenuated the aggressive phenotype induced by FHL2 overexpression. CONCLUSIONS: FHL2 promotes the progression of LUAD by activating the PI3K/AKT/mTOR pathway and subsequently inhibiting autophagy, which can be exploited as a potential therapeutic target for LUAD.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Cell Line, Tumor , Cell Movement/genetics , Adenocarcinoma of Lung/pathology , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Lung Neoplasms/pathology , Autophagy , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Muscle Proteins/genetics , Muscle Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , LIM-Homeodomain Proteins/genetics , LIM-Homeodomain Proteins/metabolism , LIM-Homeodomain Proteins/pharmacology
4.
Water Res ; 253: 121290, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38367377

ABSTRACT

Solar-driven water evaporation, as an environmentally benign pathway, provides an opportunity for alleviating global clean water scarcity. However, the rapidly generated interfacial steam and localized heating could cause increased salt concentration and accumulation, deteriorating the evaporation performance and long-term stability. Herein, a novel superhydrophobic sand solar (FPPSD) evaporator with a core-shell structure was proposed through interface functionalization for continuous photothermal desalination. The collective behavior essence of the sand aggregate gave itself micron-scale self-organized pores and configurable shapes, generating desirable capillary force and supplying effective water-pumping channels. More importantly, combining the dopamine, polypyrrole (PPy), and 1H,1H,2H,2H-perfluorodecyltriethoxysilane (PFDTS) through π-π conjugation and multiple hydrogen bonding effects gave the FPPSD evaporator with stable superhydrophobic property and highly efficient photothermal conversion capability. Therefore, the FPPSD evaporator showed a continuous and stable photothermal performance even after 96 h continuous evaporation under 3-sun irradiation for 10 wt% saline solution, among the best values in the reported works of literature, demonstrating its excellent salt-resistance stability. Furthermore, this novel FPPSD evaporator displayed outstanding environmental stability that kept its initial water transport capacity even after being treated under harsh conditions for 30 days. With excellent salt-resistance ability and stable environmental stability, the FPPSD evaporator will provide an attractive platform for sustainable solar-driven water management.


Subject(s)
Polymers , Sand , Pyrroles , Sodium Chloride , Water , Hydrophobic and Hydrophilic Interactions
5.
Clin Transl Oncol ; 26(3): 623-629, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37477785

ABSTRACT

BACKGROUND: Lung cancer is the primary cause of cancer-related mortality worldwide. Hemoglobin (Hb) represents the most widely utilized test parameter in clinical settings. However, few articles have examined the causal relationship between Hb concentration and lung cancer incidence. METHODS: Mendelian randomization (MR) was first conducted to investigate the potential causality between Hb and lung cancer. Sensitivity analyses were applied to validate the reliability of MR results. Then, the National Health and Nutrition Examination Survey (NHANES) database was used to verify the effect of Hb on the prognosis of lung cancer. RESULTS: The MR analysis demonstrated that Hb was casually associated with the decreased risk of lung cancer in the European population (ORIVW 0.84, 95% CI 0.75-0.95, p = 0.006; ORWeighted-median 0.78, 95% CI 0.65-0.94, p = 0.008; ORMR-Egger 0.82, 95% CI 0.64-1.04, p = 0.11). The results from the NHANES database showed that a high value of Hb was associated with better outcomes for patients with lung cancer (HR 0.45, 95% CI 0.26-0.79, p = 1.6E-03). CONCLUSIONS: Our study provides further evidence for the relationship between Hb levels and lung cancer, highlighting the potential significance of Hb as a biomarker for predicting the risk and prognosis of lung cancer.


Subject(s)
Lung Neoplasms , Humans , Lung Neoplasms/epidemiology , Lung Neoplasms/genetics , Mendelian Randomization Analysis , Nutrition Surveys , Reproducibility of Results , Hemoglobins , Genome-Wide Association Study
8.
Small ; 19(30): e2302509, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37026662

ABSTRACT

Aerogels have provided a significant platform for passive radiation-enabled thermal regulation, arousing extensive interest due to their capabilities of radiative cooling or heating. However, there still remains challenge of developing functionally integrated aerogels for sustainable thermal regulation in both hot and cold environment. Here, Janus structured MXene-nanofibrils aerogel (JMNA) is rationally designed via a facile and efficient way. The achieved aerogel presents the characteristic of high porosity (≈98.2%), good mechanical strength (tensile stress of ≈2 MPa, compressive stress of ≈115 kPa), and macroscopic shaping property. Based on the asymmetric structure, the JMNA with switchable functional layers can alternatively enable passive radiative heating and cooling in winter and summer, respectively. As a proof of concept, JMNA can function as a switchable thermal-regulated roof to effectively enable the inner house model to maintain >25 °C in winter and <30 °C in hot summer. This design of Janus structured aerogels with compatible and expandable capabilities is promising to widely benefit the low-energy thermal regulation in changeable climate.

9.
Nano Lett ; 22(23): 9343-9350, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36377801

ABSTRACT

In nature, deep-sea fish featured with close-packed melanosomes can remarkably lower light reflection, which have inspired us to design ultrablack coatings for enhanced solar-to-thermal conversion. Herein, a biomimetic ultrablack textile is developed enabled by the formation of hierarchical polypyrrole (Ppy) nanospheres. The fabricated textile exhibits prominently suppressed reflectance of lower than 4% and highly enhanced absorption of up to 96%. Further experimental results and molecular dynamics (MD) simulation evidence the formation process of hierarchical nanospheres. Based on high-efficient solar-to-thermal conversion, the biomimetic textile with desirable conductivity allows the development of a salt-free solar evaporator, enabling a sustainable seawater evaporation rate of up to 1.54 kg m-2 h-1 under 1 sun. Furthermore, the biomimetic hierarchical textile exhibits good superhydrophobicity, enhanced photothermal property, and high electrothermal conversion, demonstrating significant potential in wearable thermal management (rescue vests) in water conditions.


Subject(s)
Biomimetics , Nanostructures , Animals , Polymers , Pyrroles , Textiles
10.
Curr Pharm Des ; 28(25): 2052-2064, 2022.
Article in English | MEDLINE | ID: mdl-36062855

ABSTRACT

Non-small cell lung cancer (NSCLC) remains one of the deadliest malignant diseases, with high incidence and mortality worldwide. The insulin-like growth factor (IGF) axis, consisting of IGF-1, IGF-2, related receptors (IGF-1R, -2R), and high-affinity binding proteins (IGFBP 1-6), is associated with promoting fetal development, tissue growth, and metabolism. Emerging studies have also identified the role of the IGF axis in NSCLC, including cancer growth, invasion, and metastasis. Upregulation of IGE-1 and IGF-2, overexpression of IGF-1R, and dysregulation of downstream signaling molecules involved in the PI-3K/Akt and MAPK pathways jointly increase the risk of cancer growth and migration in NSCLC. At the genetic level, some noncoding RNAs could influence the proliferation and differentiation of tumor cells through the IGF signaling pathway. The resistance to some promising drugs might be partially attributed to the IGF axis. Therapeutic strategies targeting the IGF axis have been evaluated, and some have shown promising efficacy. In this review, we summarize the biological roles of the IGF axis in NSCLC, including the expression and prognostic significance of the related components, noncoding RNA regulation, involvement in drug resistance, and therapeutic application. This review offers a comprehensive understanding of NSCLC and provides insightful ideas for future research.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Humans , Insulin-Like Growth Factor II/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism , Receptor, IGF Type 1/therapeutic use , Signal Transduction
11.
Front Microbiol ; 13: 867770, 2022.
Article in English | MEDLINE | ID: mdl-35547150

ABSTRACT

Acinetobacter baumannii, a strictly aerobic, non-lactose fermented Gram-negative bacteria, is one of the important pathogens of nosocomial infection. Major facilitator superfamily (MFS) transporter membrane proteins are a class of proteins that widely exists in microbial genomes and have been revealed to be related to biofilm formation in a variety of microorganisms. However, as one of the MFS transporter membrane proteins, little is known about the role of BIT33_RS14560 in A. baumannii. To explore the effects of BIT33_RS14560 on biofilm formation of A. baumannii, the biofilm formation abilities of 62 isolates were firstly investigated and compared with their transcript levels of BIT33_RS14560. Then, this specific gene was over-expressed in a standard A. baumannii strain (ATCC 19606) and two isolates of extensively drug-resistant A. baumannii (XDR-Ab). Bacterial virulence was observed using a Galleria mellonella infection model. High-throughput transcriptome sequencing (RNA seq) was performed on ATCC 19606 over-expressed strain and its corresponding empty plasmid control strain. Spearman's correlation analysis indicated a significant negative correlation (R = -0.569, p = 0.000) between the △CT levels of BIT33_RS1456 and biofilm grading of A. baumannii isolates. The amount of A. baumannii biofilm was relatively high within 12-48 h. Regardless of standard or clinical strains; the biofilm biomass in the BIT33_RS14560 overexpression group was significantly higher than that in the control group ( p < 0.0001). Kaplan-Meier survival curve analysis showed that the mortality of G. mellonella was significantly higher when infected with the BIT33_RS14560 overexpression strain (χ2 = 8.462, p = 0.004). RNA-Seq showed that the mRNA expression levels of three genes annotated as OprD family outer membrane porin, glycosyltransferase family 39 protein, and glycosyltransferase family 2 protein, which were related to bacterial adhesion, biofilm formation, and virulence, were significantly upregulated when BIT33_RS14560 was over-expressed. Our findings provided new insights in identifying potential drug targets for the inhibition of biofilm formation. We also developed a practical method to construct an over-expressed vector that can stably replicate in XDR-Ab isolates.

12.
ACS Appl Mater Interfaces ; 13(31): 36679-36696, 2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34337938

ABSTRACT

The purification of stabilized oil/water emulsions is essential to meet the ever increasing demand for monitoring water in the environment, which has been addressed with superwetting carbon-based separation membranes. These include superhydrophilic carbon-based membranes whose progress in recent years and perspectives are reviewed in this paper. The membrane construction strategy is organized into four parts, vacuum-assisted self-assembly, sol-gel process, electrospinning, and vacuum-assisted filtration. In each section, the design strategies and their responding disadvantages have been comprehensively discussed. The challenges and prospects concerning the superhydrophilic carbon-based separation membranes for oily wastewater purification are also summarized to arouse researchers to carry out more studies.

13.
BMC Cardiovasc Disord ; 21(1): 380, 2021 08 06.
Article in English | MEDLINE | ID: mdl-34362296

ABSTRACT

BACKGROUND: Anti-Ku is a rare antibody which can be positive in some rheumatic diseases and it might be related to cardiac involvement. Polymyositis is an inflammatory myopathy, and its cardiac involvement seldom presents as myopericarditis and anti-Ku positive. CASE PRESENTATION: In this case, we report a mid-aged woman with chest pain, upper limbs weakness and fever unrelated with infection. The diagnosis of this case was unquestionably myopericarditis supported by ECG, cardiac MRI and negative findings in coronary arteries. Diagnosis of polymyositis was further clarified by the evidence of persistently increased CK, degeneration of proximal muscle in MRI, muscular dystrophy with lymphocytes infiltration in muscle biopsy. In the analysis of autoantibodies, we surprisingly discovered positive anti-Ku. Glucocorticoid and mycophenolate mofetil were then prescribed for polymyositis. Patient follow-up indicated remission of both myopericarditis and polymyositis. We finally clarified this rare case as a positive anti-Ku polymyositis with myopericarditis as cardiac involvement. CONCLUSION: This report presents a rare case with anti-Ku positive polymyositis and the cardiac involvement of polymyositis was manifested as myopericarditis. Therefore, positive anti-Ku might explain the myopericarditis as cardiac involvement in polymyositis. More cases and longer duration of follow-up is required for the comprehensive understanding of the disease.


Subject(s)
Autoantibodies/analysis , Chest Pain/etiology , Ku Autoantigen/immunology , Myocarditis/immunology , Polymyositis/immunology , Autoantibodies/immunology , Creatine Kinase/blood , Electrocardiography , Female , Fever/diagnosis , Glucocorticoids/therapeutic use , Humans , Magnetic Resonance Imaging , Middle Aged , Muscular Dystrophies/pathology , Mycophenolic Acid/therapeutic use , Myocarditis/complications , Myocarditis/diagnostic imaging , Polymyositis/complications , Polymyositis/diagnosis
14.
BMC Cancer ; 21(1): 429, 2021 Apr 19.
Article in English | MEDLINE | ID: mdl-33874915

ABSTRACT

BACKGROUND: Recent evidences had shown that loss in phosphatase and tensin homolog deleted on chromosome 10 (PTEN) was associated with immunotherapy resistance, which may be attributed to the non-T-cell-inflamed tumor microenvironment. The impact of PTEN loss on tumor microenvironment, especially regarding T cell infiltration across tumor types is not well understood. METHODS: Utilizing The Cancer Genome Atlas (TCGA) and publicly available dataset of immunotherapy, we explored the correlation of PTEN expressing level or genomic loss with tumor immune microenvironment and response to immunotherapy. We further investigated the involvement of PI3K-AKT-mTOR pathway activation, which is known to be the subsequent effect of PTEN loss, in the immune microenvironment modulation. RESULTS: We reveal that PTEN mRNA expression is significantly positively correlated with CD4/CD8A gene expression and T cells infiltration especially T helpers cells, central memory T cell and effector memory T cells in multiples tumor types. Genomic loss of PTEN is associated with reduced CD8+ T cells, type 1 T helper cells, and increased type 2 T helper cells, immunosuppressed genes (e.g. VEGFA) expression. Furthermore, T cell exclusive phenotype is also observed in tumor with PI3K pathway activation or genomic gain in PIK3CA or PIK3CB. PTEN loss and PI3K pathway activation correlate with immunosuppressive microenvironment, especially in terms of T cell exclusion. PTEN loss predict poor therapeutic response and worse survival outcome in patients receiving immunotherapy. CONCLUSION: These data brings insight into the role of PTEN loss in T cell exclusion and immunotherapy resistance, and inspires further research on immune modulating strategy to augment immunotherapy.


Subject(s)
Neoplasms/etiology , Neoplasms/metabolism , PTEN Phosphohydrolase/deficiency , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/therapeutic use , Databases, Genetic , Disease Susceptibility , Gene Expression , Genomics/methods , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Lymphocytes, Tumor-Infiltrating/pathology , Molecular Targeted Therapy , Neoplasms/pathology , Neoplasms/therapy , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocyte Subsets/pathology , T-Lymphocytes/pathology , TOR Serine-Threonine Kinases/metabolism , Tumor Escape , Tumor Microenvironment
15.
Small ; 17(12): e2007122, 2021 03.
Article in English | MEDLINE | ID: mdl-33586329

ABSTRACT

Membrane separation is recognized as one of the most effective strategies to treat the complicated wastewater system for economic development. However, serious membrane fouling has restricted its further application. Inspired by sphagnum, a 0D/2D heterojunction composite membrane is engineered by depositing graphitic carbon nitride nano/microspheres (CNMS) with plentiful wrinkles onto the polyacrylic acid functionalized carbon nanotubes (CNTs-PAA) membrane through hydrogen bond force. Through coupling unique structure and chemistry properties, the CNTs-PAA/CNMS heterojunction membrane presents superhydrophilicity and underwater superoleophobicity. Furthermore, thanks to the J-type aggregates during the solvothermal process, it is provided with a smaller bandgap (1.77 eV) than the traditional graphitic carbon nitride (g-C3 N4 ) sheets-based membranes (2.4-2.8 eV). This feature endows the CNTs-PAA/CNMS membrane with superior visible-light-driven self-cleaning ability, which can maintain its excellent emulsion separation (with a maximum flux of 5557 ± 331 L m-2 h-1 bar-1 and an efficiency of 98.5 ± 0.6%), photocatalytic degradation (with an efficiency of 99.7 ± 0.2%), and antibacterial (with an efficiency of ≈100%) ability even after cyclic experimental processes. The excellent self-cleaning performance of this all-in-one membrane represents its potential value for water purification.


Subject(s)
Nanotubes, Carbon , Sphagnopsida , Water Purification , Microspheres , Sunlight
16.
J Hazard Mater ; 403: 123547, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33264847

ABSTRACT

A surge of effort has been devoted to establishing super-wetting membranes with versatility for oily waste water purification. However, persistent challenge remains the lower separation flux. Moreover, the majorities of catalysts are only adsorbed on the surface and easily fall off after multiple cyclic separations. In this work, an effective strategy has been taken to construct a composite membrane consisting of polyacrylic acid functionalized carbon nanotubes (CNTs-PAA) and MIL101(Fe)@platinum nanoparticles (MIL101(Fe)@Pt NPs). The obtained CNTs-PAA/MIL101(Fe)@Pt composite membrane can achieve degradation of dye molecules and at the same time effective separation of oil-in-water emulsions. The separation throughput of this composite membrane can reach up to 11000 L m-2 h-1 bar-1, which has exceeded most of the previous reported multifunctional separation membranes. Furthermore, this composite membrane has presented stable mechanical property and excellent anti-corrosion ability. This work gives comprehensive consideration to excellent separation performance, versatility and stability, which could have potential applications in practical oily wastewater treatment.

17.
Sci Rep ; 10(1): 21530, 2020 12 09.
Article in English | MEDLINE | ID: mdl-33299035

ABSTRACT

How the genomic landscape of a tumor shapes the formation of tertiary lymphoid structure (TLS) and how might TLS alter the clinical outcome or response to immunotherapy had not been systematically explored. Utilizing the genomic and transcriptome data of solid tumors on TCGA, we quantified TLS based on a previous identified 12-chemokine signature and evaluated its correlation with mutation/neoantigen burden, functional mutation of oncogenes and the presence of viral infection. Clinical data was integrated to decide the prognostic significance of TLS for different cancers after surgical treatment. Publicly available data (clinical and transcriptome data) of immunotherapy clinical trials involving melanoma and lung cancer were also collected to evaluate TLS's association with therapeutic outcome. Mutation burden and predicted neoantigen counts were positively correlated with TLS scoring in multiple cancer types. Mutation in tumor suppressor genes (KEAP1, PBRM1) and genes involved in extrinsic apoptosis (CASP8), antigen-presentation (HLA-A, HLA-B), immune regulation (SMAD4) or DNA repair (BRCA1, BRCA2, TP53BP1) correlated with TLS alteration in multiple tumor types, indicating the interaction between mutation landscape and TLS formation. Epstein-Barr virus (EBV) infection in gastric cancer and human papillomavirus (HPV) infection in Head and Neck squamous cell carcinoma were associated with increased TLS scoring. High TLS scoring predicted favorable prognosis in certain cancer after surgical treatment and improved response to immunotherapy in lung cancer and melanoma. Our findings unraveled the genomic properties associated with TLS formation in different solid tumors and highlighted the prognostic and predictive significance of TLS in surgical treatment and immunotherapy.


Subject(s)
Neoplasms/genetics , Tertiary Lymphoid Structures/genetics , Tertiary Lymphoid Structures/pathology , Databases, Genetic , Gene Expression/genetics , Gene Expression Profiling/methods , Genome/genetics , Genomics/methods , Humans , Immunotherapy , Lymphocytes, Tumor-Infiltrating/immunology , Neoplasms/immunology , Neoplasms/pathology , Prognosis , Transcriptome/genetics , Tumor Microenvironment/immunology
18.
Oncol Lett ; 18(5): 5437-5447, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31612052

ABSTRACT

Bisphosphonates (Bps) inhibit the maturation of osteoclasts and suppress the adhesion of cancer cells to the bone matrix. They are recommended as the standard treatment for tumors exhibiting bone metastasis (BM). However, whether Bps can improve the prognosis of patients with tyrosine kinase inhibitor (TKI)-treated non-small cell lung cancer (NSCLC) exhibiting BM remains unclear. A total of 129 patients with NSCLC initially diagnosed with BM at The First Affiliated Hospital of Sun Yat-Sen University (Guangzhou, China) between January 2005 and December 2017 were analyzed in the present retrospective study. Median progression free survival (mPFS) time, median bone metastasis overall survival (mBM-OS) time and bone-associated progression-free survival were analyzed. Among the 129 patients, patients treated with Bps experienced significantly prolonged PFS time [mPFS: 7.1 vs. 5.1 months; hazard ratio (HR), 0.51; confidence interval (CI), 0.30-0.87; P=0.0114] in comparison with patients not treated with Bps. Of the 49 patients treated with frontline TKIs (EGFR TKIs or ALK TKI), 32 received Bps at the same time, while 17 patients received TKIs alone. The results revealed that mPFS time was significantly greater in the TKIs plus Bps group than in the TKIs alone group (mPFS: 11.2 vs. 6.9 months; HR, 0.13; CI, 0.05-0.35; P<0.0001). Significantly prolonged BM-OS time was also observed in the combination group in comparison with the TKIs alone group (mBM-OS: 31 vs. 22 months; HR, 0.31; CI, 0.10-0.96; P=0.0413). The present study demonstrated that among the patients who received TKIs (EGFR TKIs or ALK TKIs), those who also received Bps experienced significantly longer PFS time and tended to exhibit significantly improved BM-OS time, which indicated that Bps should be added to the treatment regimen of patients with NSCLC exhibiting genetic mutations and bone metastasis who have been prescribed TKIs (EGFR TKIs or ALK TKIs).

19.
Sci Rep ; 9(1): 9381, 2019 06 28.
Article in English | MEDLINE | ID: mdl-31253818

ABSTRACT

In recent years, increasing attention has been paid to the origin, transmission and communication of silk. However, this is still an unsolved mystery in archaeology. The identification of silk-producing species, especially silk produced by Bombyx mori (B. mori) and Antheraea pernyi (A. pernyi), is of key significance to address this challenge. In this study, two innovative methods, i.e. immunology and proteomics, were proposed and successfully established for the species identification of silks. ELISAs result demonstrated that the two prepared antibodies exhibited high sensitivity and specificity in distinguishing B. mori and A. pernyi silk. No cross-reactivity with each other was observed. Moreover, biomarkers were obtained for Bombyx and Antheraea through proteomic analysis. It was also confirmed that the biomarkers were suitable for identifying the species that produced a given silk sample. Compared with conventional methods for distinguishing silk species, immunological and proteomics techniques used in tandem can provide intact information and have the potential to provide accurate and reliable information for species identification.


Subject(s)
Bombyx/immunology , Bombyx/metabolism , Moths/immunology , Moths/metabolism , Proteomics , Silk/analysis , Silk/classification , Animals , Antibodies/immunology , Antibody Specificity/immunology , Biomarkers , Cross Reactions/immunology , Databases, Genetic , Enzyme-Linked Immunosorbent Assay , Insect Proteins , Phenotype , Proteome , Proteomics/methods , Silk/chemistry , Silk/ultrastructure , Species Specificity , Spectrum Analysis
20.
ACS Nano ; 13(4): 4368-4378, 2019 04 23.
Article in English | MEDLINE | ID: mdl-30969103

ABSTRACT

As promising candidates for intelligent biomimetic applications similar to living organisms, smart soft materials have aroused extensive interest due to their extraordinarily designable structures and functionality. Herein, a bubble-like elastomer-based electronic skin that can be pneumatically actuated is achieved through hydrophilic/hydrophobic interphase mediated asymmetric functionalization. The asymmetric and controllable introduction of elastic polydimethylsiloxane into the carbon nanotube film at the air/water interface can endow the Janus ultrathin film with tunable conductivity, self-adhesivity, self-adaptivity, and even self-sealing properties. As a result, the Janus films can be employed as multifunctional electronics, including self-adhesive strain sensing/thermal managing devices and even noncontact mechanical sensors as artificial eardrums for tiny air-pressure detection. Significantly, these excellent features can further enable the integration of actuating and sensing functions. As a proof of concept, the Janus film can serve as a self-supported device to simultaneously imitate the controllable contracting/expanding behaviors of the vocal sac of frog and monitor the real-time current change in this process, demonstrating significant potential in smart bionic applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...