Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 61(17): e202116934, 2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35148567

ABSTRACT

The integration of Fe dopant and interfacial FeOOH into Ni-MOFs [Fe-doped-(Ni-MOFs)/FeOOH] to construct Fe-O-Ni-O-Fe bonding is demonstrated and the origin of remarkable electrocatalytic performance of Ni-MOFs is elucidated. X-ray absorption/photoelectron spectroscopy and theoretical calculation results indicate that Fe-O-Ni-O-Fe bonding can facilitate the distorted coordinated structure of the Ni site with a short nickel-oxygen bond and low coordination number, and can promote the redistribution of Ni/Fe charge density to efficiently regulate the adsorption behavior of key intermediates with a near-optimal d-band center. Here the Fe-doped-(Ni-MOFs)/FeOOH with interfacial Fe-O-Ni-O-Fe bonding shows superior catalytic performance for OER with a low overpotential of 210 mV at 15 mA cm-2 and excellent stability with ≈3 % attenuation after a 120 h cycle test. This study provides a novel strategy to design high-performance Ni/Fe-based electrocatalysts for OER in alkaline media.

2.
Chem Commun (Camb) ; 57(12): 1522-1525, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33587727

ABSTRACT

The multi metal organic frameworks (BTC-CoNiFeZn) were used as the precursors of in situ structure reconstruction in alkaline solution, and we synthesized hierarchical porous Ni,Fe-codoped Co-hydroxide nanowire array (Ni0.8Fe0.2/Co-H NAs/NF) catalyst for the oxygen evolution reaction (OER). Benefiting from the rational micro-structure, rich ion-accessible nanopores, and abundant defect sites, the target catalysts possess enhanced intrinsic activity. The obtained Ni0.8Fe0.2/Co-H NAs/NF catalysts show superior OER catalytic activity with a low overpotential of 231 mV at 10 mA cm-2, a small Tafel slope of 32.9 mV dec-1, and high cycle stability for 135 h with performance degradation of only about 4.4%.

3.
Nanoscale ; 12(20): 11201-11208, 2020 May 28.
Article in English | MEDLINE | ID: mdl-32409798

ABSTRACT

The development of efficient electrocatalysts for overall water splitting is important for future renewable energy systems. Herein, macroporous CoO covered by Co/N-doped graphitic carbon nanosheet arrays (mac-CoO@Co/NGC NSAs) were constructed by engineering a mesoporous CoO nanowire (mes-CoO NWAs) core with highly conductive Co nanoparticles coated by a N-doped graphitic carbon (Co/NGC) shell. The in situ derived Co/NGC shell not only introduces electrocatalytic active sites for the hydrogen evolution reaction (HER) but also promotes the oxygen evolution reaction (OER) through the strong interaction between the CoO core and the Co/NGC shell. Moreover, the highly conductive Co/NGC shell crosslinks the isolated mesoporous CoO nanowires into a nanosheet rich in macropores, ensuring effective electron and mass transfer. Furthermore, the chemically stable N-doped graphitic carbon layer and physically stable hierarchical nanosheet arrays ensure the stability of the catalyst. Owing to the desirable interfaces and pore architecture, the as-prepared mac-CoO@Co/NGC NSAs can serve as highly effective, binder-free electrocatalysts for overall water splitting with a stable cell voltage of 1.62 V at 10 mA cm-2 for 35 h.

4.
Chem Sci ; 12(2): 650-659, 2020 Oct 06.
Article in English | MEDLINE | ID: mdl-34163796

ABSTRACT

The intrinsic activity of NiFe layer double hydroxides (LDHs) for the oxygen evolution reaction (OER) suffers from its predominantly exposed (003) basal plane, which is thought to have poor activity. Herein, we construct a hierarchal structure of NiFe LDH nanosheet-arrays-on-microplates (NiFe NSAs-MPs) to elevate the electrocatalytic activity of NiFe LDHs for the OER by exposing a high-activity plane, such as the (012) edge plane. It is surprising that the NiFe NSAs-MPs show activity of 100 mA cm-2 at an overpotential (η) of 250 mV, which is five times higher than that of (003) plane-dominated NiFe LDH microsheet arrays (NiFe MSAs) at the same η, representing the excellent electrocatalytic activity for the OER in alkaline media. Besides, we analyzed the OER activities of the (003) basal plane and the (012) and (110) edge planes of NiFe LDHs by density functional theory with on-site Coulomb interactions (DFT+U), and the calculation results indicated that the (012) edge plane exhibits the best catalytic performance among the various crystal planes because of the oxygen coordination of the Fe site, which is responsible for the high catalytic activity of NiFe NSAs-MPs.

5.
Adv Mater ; 29(3)2017 Jan.
Article in English | MEDLINE | ID: mdl-27865016

ABSTRACT

Porous CoFe2 O4 /C NRAs supported on nickel foam@NC (denoted as NF@NC-CoFe2 O4 /C NRAs) are directly fabricated by the carbonization of bimetal-organic framework NRAs grown on NF@poly-aniline(PANI), and they exhibit high electrocatalytic activity, low overpotential, and high stability for the oxygen evolution reaction in alkaline media.

SELECTION OF CITATIONS
SEARCH DETAIL
...