Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Front Vet Sci ; 11: 1367328, 2024.
Article in English | MEDLINE | ID: mdl-38550785

ABSTRACT

Background: The in vitro and in vivo anti-inflammatory and anti-oxidative effects of an amino acid (AA) blend (tryptophan, threonine, and methionine) in pigs. Objective: This study aimed to evaluate the in vitro anti-inflammatory and anti-oxidative effects of an AA blend on intestinal porcine epithelial cells (IPEC-J2) and the in vivo anti-inflammatory and anti-oxidative effects in pigs experimentally challenged with Salmonella Typhimurium. Methods: IPEC-J2 were pretreated with an AA blend for 25 h and then treated with lipopolysaccharide (LPS), deoxynivalenol (DON), or H2O2 for in vitro evaluation. A controlled standard diet supplemented with 0.3% of the AA blend was orally fed to the treated group pigs for 14 days, beginning at 21 days of age. At the end of the feeding period, pigs were orally inoculated with Salmonella Typhimurium. Results: Pre-treatment with the AA blend reduced LPS/DON-induced interleukin (IL)-8 mRNA as a measurement of the anti-inflammatory effect and H2O2-induced reactive oxygen species (ROS) as a measurement of the anti-oxidative effect on IPEC-J2. Feeding with an AA blend resulted in a reduction of proinflammatory (tumor necrosis factor-α, IL-6, and IL-8) cytokine levels, while treated pigs experienced an increase in anti-inflammatory IL-10 cytokine in their sera. The addition of an AA blend-supplemented pig feed resulted in significantly lower Salmonella-induced cecal lesion scores compared to untreated pigs. Discussion: Supplementation of feed with an AA blend reduced intestinal inflammation and pathology in pigs and may be applied for the control of Salmonella Typhimurium infection, as demonstrated in this study.

2.
Compr Psychiatry ; 121: 152360, 2023 02.
Article in English | MEDLINE | ID: mdl-36508776

ABSTRACT

The goal of the present study was to evaluate the psychometric properties of the Suicide Screening Questionnaire-Self-Rating (SSQ-SR). A 25-item SSQ-SR is a newly developed suicide screening tool that measures suicide risk factors, including a history of suicidal thoughts and behaviors (STBs), life stress, and mental health problems. To investigate the reliability and validity of the SSQ-SR, we conducted a longitudinal case-control study with adults with and without STBs in the past six months. A total of 176 participants were recruited through 12 hospital-based Crisis Response Centers across South Korea. At the baseline, we administered the SSQ-SR, the Beck Scale for Suicide Ideation (BSSI), and the Patient Health Questionnaire-9 (PHQ-9). In a 6-months follow-up, we investigated whether the participants engaged in suicidal ideation, plan, or attempt since the baseline assessment. As a result, the SSQ-SR demonstrated a strong internal consistency (Cronbach's alpha coefficient = 0.96). In addition, the total score of SSQ-SR had concurrent validity compared to the total scores of the BSSI and the PHQ-9. In comparing the suicidal groups with the control group, the ROC analysis indicated the optimal cut point at 31 with a sensitivity rate of 0.97 and a specificity rate of 0.98. Through explanatory factor analysis, two factors were identified: Mental Health and Environmental Factors and Active Suicidal Thoughts and Behaviors. The SSQ-SR total and sub-factor scores were prospectively associated with subsequent suicidal ideation, plan, and attempt. These findings support that the SSQ-SR is a promising tool in prospectively screening those who are at risk of suicidal thoughts, plans, and nonfatal attempts.


Subject(s)
Asian People , Suicidal Ideation , Humans , Adult , Reproducibility of Results , Case-Control Studies , Surveys and Questionnaires , Psychometrics
3.
Sci Rep ; 12(1): 941, 2022 01 18.
Article in English | MEDLINE | ID: mdl-35042907

ABSTRACT

Bacteriophages, simply phages, have long been used as a potential alternative to antibiotics for livestock due to their ability to specifically kill enterotoxigenic Escherichia coli (ETEC), which is a major cause of diarrhea in piglets. However, the control of ETEC infection by phages within intestinal epithelial cells, and their relationship with host immune responses, remain poorly understood. In this study, we evaluated the effect of phage EK99P-1 against ETEC K99-infected porcine intestinal epithelial cell line (IPEC-J2). Phage EK99P-1 prevented ETEC K99-induced barrier disruption by attenuating the increased permeability mediated by the loss of tight junction proteins such as zonula occludens-1 (ZO-1), occludin, and claudin-3. ETEC K99-induced inflammatory responses, such as interleukin (IL)-8 secretion, were decreased by treatment with phage EK99P-1. We used a IPEC-J2/peripheral blood mononuclear cell (PBMC) transwell co-culture system to investigate whether the modulation of barrier disruption and chemokine secretion by phage EK99P-1 in ETEC K99-infected IPEC-J2 would influence immune cells at the site of basolateral. The results showed that phage EK99P-1 reduced the mRNA expression of ETEC K99-induced pro-inflammatory cytokines, IL-1ß and IL-8, from PBMC collected on the basolateral side. Together, these results suggest that phage EK99P-1 prevented ETEC K99-induced barrier dysfunction in IPEC-J2 and alleviated inflammation caused by ETEC K99 infection. Reinforcement of the intestinal barrier, such as regulation of permeability and cytokines, by phage EK99P-1 also modulates the immune cell inflammatory response.


Subject(s)
Enterotoxigenic Escherichia coli/virology , Intestinal Mucosa/metabolism , Tight Junction Proteins/metabolism , Animals , Bacterial Adhesion/physiology , Bacteriophages/genetics , Bacteriophages/metabolism , Bacteriophages/pathogenicity , Cell Line , Enterotoxigenic Escherichia coli/genetics , Enterotoxigenic Escherichia coli/physiology , Epithelial Cells/metabolism , Escherichia coli/genetics , Escherichia coli/physiology , Escherichia coli/virology , Escherichia coli Infections/prevention & control , Inflammation/metabolism , Intestinal Diseases/metabolism , Intestines , Occludin/metabolism , Permeability , Swine , Tight Junctions/metabolism
4.
Tissue Eng Regen Med ; 18(5): 693-712, 2021 10.
Article in English | MEDLINE | ID: mdl-34304387

ABSTRACT

Vaccination has been recently attracted as one of the most successful medical treatments of the prevalence of many infectious diseases. Mucosal vaccination has been interested in many researchers because mucosal immune responses play part in the first line of defense against pathogens. However, mucosal vaccination should find out an efficient antigen delivery system because the antigen should be protected from degradation and clearance, it should be targeted to mucosal sites, and it should stimulate mucosal and systemic immunity. Accordingly, mucoadhesive polymeric particles among the polymeric particles have gained much attention because they can protect the antigen from degradation, prolong the residence time of the antigen at the target site, and control the release of the loaded vaccine, and results in induction of mucosal and systemic immune responses. In this review, we discuss advances in the development of several kinds of mucoadhesive polymeric particles for mucosal vaccine delivery.


Subject(s)
Polymers , Vaccines , Drug Delivery Systems , Immunity, Mucosal , Mucous Membrane
5.
Immune Netw ; 21(2): e14, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33996170

ABSTRACT

Scrub typhus develops after the individual is bitten by a trombiculid mite infected with Orientia tsutsugamushi. Since it has been reported that pneumonia is frequently observed in patients with scrub typhus, we investigated whether intranasal (i.n.) vaccination with the outer membrane protein of O. tsutsugamushi (OMPOT) would induce a protective immunity against O. tsutsugamushi infection. It was particular interest that when mice were infected with O. tsutsugamushi, the bacteria disseminated into the lungs, causing pneumonia. The i.n. vaccination with OMPOT induced IgG responses in serum and bronchoalveolar lavage (BAL) fluid. The anti-O. tsutsugamushi IgA Abs in BAL fluid after the vaccination showed a high correlation of the protection against O. tsutsugamushi. The vaccination induced strong Ag-specific Th1 and Th17 responses in the both spleen and lungs. In conclusion, the current study demonstrated that i.n. vaccination with OMPOT elicited protective immunity against scrub typhus in mouse with O. tsutsugamushi infection causing subsequent pneumonia.

6.
Vet Res ; 51(1): 73, 2020 May 27.
Article in English | MEDLINE | ID: mdl-32460863

ABSTRACT

Monocytes/macrophages, which are found in a variety of organs, maintain tissue homeostasis at a steady state and act as the first line of defence during pathogen-induced inflammation in the host. Most monocyte/macrophage lineage studies in chickens have been largely performed using cell lines, while few studies using primary cells have been conducted. In the present study, the phenotypic and functional characteristics of splenic monocyte/macrophage lineage cells during steady state and inflammatory conditions were examined. Splenic monocyte/macrophage lineage cells could be identified as MRC1loMHCIIhi and MRC1hiMHCIIlo cells based on their surface expression of MRC1 and MHCII. In the steady state, MRC1loMHCIIhi cells were more frequently found among MRC1+ cells. MRC1loMHCIIhi cells expressed a higher number of antigen-presenting molecules (MHCII, MHCI, and CD80) than MRC1hiMHCIIlo cells. In contrast, MRC1hiMHCIIlo cells showed better phagocytic and CCR5-dependent migratory properties than MRC1loMHCIIhi cells. Furthermore, MRC1hiMHCIIlo cells infiltrated the spleen in vivo and then became MRC1loMHCIIhi cells. During lipopolysaccharide (LPS)-induced inflammatory conditions that were produced via intraperitoneal (i.p.) injection, the proportion and absolute number of MRC1hiMHCIIlo cells were increased in the spleen. Uniquely, inflammation induced the downregulation of MHCII expression in MRC1hiMHCIIlo cells. The major source of inflammatory cytokines (IL-1ß, IL-6, and IL-12) was MRC1loMHCIIhi cells. Furthermore, MRC1hiMHCIIlo cells showed greater bactericidal activity than MRC1loMHCIIhi cells during LPS-induced inflammation. Collectively, these results suggest that two subsets of monocyte/macrophage lineage cells exist in the chicken spleen that have functional differences.


Subject(s)
Chickens/immunology , Macrophages/immunology , Monocytes/immunology , Spleen/immunology , Animals , Cell Line
7.
Ann Pediatr Endocrinol Metab ; 25(4): 248-255, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33401881

ABSTRACT

PURPOSE: Despite the prevalent use of insulin pump therapy worldwide, few studies have been conducted among young patients with type 1 diabetes (T1D) in Korea. We investigated the durability and effectiveness of insulin pump therapy among Korean pediatric and young adult patients with T1D. METHODS: This study included 54 patients with T1D diagnosed at pediatric ages (range, 1.1-14.1 years) who initiated insulin pump therapy during 2016-2019 at Seoul National University Children's Hospital and Seoul National University Bundang Hospital. Clinical and biochemical data, including anthropometric measurements, insulin dose, and glycated hemoglobin (HbA1c) levels were obtained from T1D diagnosis to last follow-up. RESULTS: Forty-four patients (81.5%) continued insulin pump therapy with a median pump use duration of 2.9 years (range, 0.2-3.5 years); 10 discontinued the therapy within 12 months (<1 month, n=6; 1-6 months, n=1; and 6-12 months, n=3) due to physical interferences or financial problems. Older age (≥10 years of age) and longer diabetes duration (≥2 years) at the initiation of pump therapy were associated with discontinuation (P<0.05 for both). For patients continuing pump therapy, HbA1c levels significantly decreased after 1 year of therapy (from 8.9% to 8.1%, P<0.001) without changes in the body mass index z-scores or insulin dose. Although 4 patients experienced diabetic ketoacidosis, all recovered without complications. CONCLUSION: Insulin pump therapy was effective in improving glycemic control in T1D patients during 12 months of treatment. Early initiation of insulin pump therapy after T1D diagnosis was helpful for continuing therapy.

8.
Article in English | WPRIM (Western Pacific) | ID: wpr-899660

ABSTRACT

Failure to achieve stable fixation during surgery for a Lisfranc joint injury leads to subtle instability that causes dysfunction and posttraumatic osteoarthritis. Therefore, it is important to check for appropriate fixation during surgery. This paper reports a test that evaluates the joint instability dynamically during the open reduction of the Lisfranc joint and checks the stability after fixation. a Freer elevator was inserted into the interosseous area between the medial cuneiform and second metatarsal base, and a twisting force was applied to evaluate the dynamic instability of the Lisfranc joint. After fixation of the Lisfranc joint, the stability of the fixation could be tested by trying this maneuver with the Freer elevator. Overall, the Freer test can be considered a valuable test in open surgery for a Lisfranc joint injury.

9.
Article in English | WPRIM (Western Pacific) | ID: wpr-891956

ABSTRACT

Failure to achieve stable fixation during surgery for a Lisfranc joint injury leads to subtle instability that causes dysfunction and posttraumatic osteoarthritis. Therefore, it is important to check for appropriate fixation during surgery. This paper reports a test that evaluates the joint instability dynamically during the open reduction of the Lisfranc joint and checks the stability after fixation. a Freer elevator was inserted into the interosseous area between the medial cuneiform and second metatarsal base, and a twisting force was applied to evaluate the dynamic instability of the Lisfranc joint. After fixation of the Lisfranc joint, the stability of the fixation could be tested by trying this maneuver with the Freer elevator. Overall, the Freer test can be considered a valuable test in open surgery for a Lisfranc joint injury.

10.
Toxicol Lett ; 305: 110-116, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30708112

ABSTRACT

Fumonisin B1 (FB1), mainly produced by Fusarium verticillioides and Fusarium proliferatum, can be converted to the less toxic metabolite hydrolyzed FB1 (HFB1) by enzymatic degradation. The application of an FB1degrading enzyme as a feed additive is a strategy to reduce fumonisin exposure of animals. However, the difference between the effect of FB1 and HFB1 on porcine intestinal immunity is poorly documented. We investigated the toxic effects of FB1 and HFB1 exposure on porcine gut barrier function and intestinal immunity by using a co-culture model of intestinal porcine epithelial cells (IPEC-J2) and porcine peripheral blood mononuclear cells (PBMCs). First, we confirmed that Fusarium mycotoxin (deoxynivalenol; DON), in the presence of an endotoxin (lipopolysaccharide: LPS), disrupted gut permeability of IPEC-J2 and induced inflammatory response in the co-culture system. FB1 induced additional damage to gut barrier function and promoted pro-inflammatory responses in the presence of LPS and DON compared to only LPS/DON treatment. In the co-culture system, FB1/LPS/DON induced increased cell death of PBMCs and pro-inflammatory cytokines than LPS/DON treatment. In contrast, the application of HFB1 resulted in reduced levels of chemokines and pro-inflammatory cytokines together with marginal immune cell death compared to FB1/LPS/DON in the IPEC-J2/PBMC co-culture system. These findings suggest that FB1 aggravates LPS/DON-induced intestinal inflammation, and HFB1 showed less toxicity to immune response. Therefore, enzymatic degradation of FB1 to HFB1 could be an effective strategy to reduce intestinal inflammation in pigs.


Subject(s)
Epithelial Cells/drug effects , Fumonisins/chemistry , Fumonisins/toxicity , Intestinal Mucosa/cytology , Leukocytes, Mononuclear/drug effects , Animals , Cell Line , Chemokines/genetics , Chemokines/metabolism , Coculture Techniques , Epithelial Cells/physiology , Leukocytes, Mononuclear/physiology , Swine
11.
Sci Rep ; 8(1): 16905, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30442912

ABSTRACT

The bursa of Fabricius, the primary lymphoid organ for B cell development found only in birds, offers novel approaches to study B cell differentiation at various developmental stages. Here, we explored the changes and mechanism involved in the developmental stages of bursal B cells. The bursal B cells rapidly increased in the late embryonic stage and around hatching, which coincided with changes in specific cell surface markers. Moreover, the cells in the bursa were divided by size into small (low forward- and side-scatter) or large (high forward- and side-scatter) via flow cytometry. It is intriguing that the proportion of small and large B cells was reversed during this period. Because little is known about this phenomenon, we hypothesized that size-based B cell population could be used as an indicator to distinguish their status and stage during B cell development in chicken. The results demonstrated that large B cells are actively proliferating cells than small B cells. Additionally, large B cells showed higher mRNA expression of both proliferation- and differentiation-associated genes compared to small B cells. Taken together, these data show that large bursal B cells are the main source of proliferation and differentiation during B cell development in chickens.


Subject(s)
B-Lymphocytes/cytology , Bursa of Fabricius/cytology , Chickens/immunology , Embryonic Development , Animals , Cell Differentiation/genetics , Cell Proliferation/genetics , Cell Size , Chick Embryo , Embryonic Development/genetics , Gene Expression Regulation, Developmental , Phenotype
12.
Biol Reprod ; 99(6): 1137-1148, 2018 12 01.
Article in English | MEDLINE | ID: mdl-29945222

ABSTRACT

Cysteine-X-cysteine (CXC) motif chemokine ligand 12 (CXCL12) and its receptor, CXC chemokine receptor type 4 (CXCR4), are involved in regulating the proliferation, migration, and survival of trophoblast cells and the maternal immune response in humans and mice. The present study examined the expression, regulation, and function of CXCL12 and CXCR4 at the maternal-conceptus interface during pregnancy in pigs. The endometrium expressed CXCL12 and CXCR4 mRNAs with the greatest CXCL12 abundance on Day 15 of pregnancy. CXCL12 protein was localized mainly in endometrial epithelial cells, while CXCR4 protein was localized in subepithelial stromal cells, vascular endothelial cells, and immune cells in blood vessels in the endometrium during the estrous cycle and pregnancy. CXCL12 protein was detected in uterine flushing on Day 15 of pregnancy. The conceptus during early pregnancy and chorioallantoic tissues during mid-to-late pregnancy expressed CXCL12 and CXCR4. Interferon-γ increased the abundance of CXCL12, but not CXCR4 mRNA in endometrial explants. Recombinant CXCL12 (rCXCL12) protein dose-dependently increased migration of cultured porcine trophectoderm cells and peripheral blood mononuclear cells (PBMCs). Furthermore, rCXCL12 caused migration of T cells, but not natural killer cells, in PBMCs. This study revealed that interferon-γ-induced CXCL12 and its receptor, CXCR4, were expressed at the maternal-conceptus interface and increased the migration of trophectoderm cells and T cells at the time of implantation in pigs. These results suggest that CXCL12 may be critical for the establishment of pregnancy by regulating trophoblast migration and T cell recruitment into the endometrium during the implantation period in pigs.


Subject(s)
Chemokine CXCL12/metabolism , Maternal-Fetal Relations/physiology , Pregnancy, Animal , Receptors, CXCR4/metabolism , Swine/metabolism , Animals , Cell Movement , Cell Proliferation , Chemokine CXCL12/genetics , DNA, Complementary/genetics , DNA, Complementary/metabolism , Endometrium/metabolism , Estrous Cycle , Female , Gene Expression Regulation, Developmental , Interferon-gamma , Pregnancy , Pregnancy, Animal/metabolism , RNA/genetics , RNA/metabolism , Receptors, CXCR4/genetics , Uterus/cytology
13.
Sci Rep ; 8(1): 8627, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29872084

ABSTRACT

The gut microbiota in chicken has long been studied, mostly from the perspective of growth performance. However, there are some immunological studies regarding gut homeostasis in chicken. Although CD4+CD25+ T cells are reported to act as regulatory T cells (Tregs) in chicken, there have been no studies showing the relationship between gut microbiota and Tregs. Therefore, we established a model for 'antibiotics (ABX)-treated chickens' through administration of an antibiotic cocktail consisting of ampicillin, gentamycin, neomycin, metronidazole, and vancomycin in water for 7 days. CD4+CD8-CD25+ and CD4+CD8+CD25+ T cells in cecal tonsils were significantly decreased in this model. Gram-positive bacteria, especially Clostridia, was responsible for the changes in CD4+CD8-CD25+ or CD4+CD8+CD25+ T cells in cecal tonsils. Feeding ABX-treated chickens with acetate recovered CD4+CD8-CD25+ and CD4+CD8+CD25+ T cells in cecal tonsils. GPR43, a receptor for acetate, was highly expressed in CD4+CD8-CD25+ T cells. In conclusion, our study demonstrated that the gut microbiota can regulate the population of CD4+CD8-CD25+ and CD4+CD8+CD25+ T cells, and that acetate is responsible for the induction of CD4+CD8-CD25+ T cells in cecal tonsils via GPR43.


Subject(s)
Gastrointestinal Microbiome/immunology , Gram-Positive Bacteria/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Regulatory/immunology , Acetates/metabolism , Animals , Anti-Bacterial Agents/administration & dosage , CD4 Antigens/analysis , CD8 Antigens/analysis , Cecum/immunology , Chickens , Interleukin-2 Receptor alpha Subunit/analysis , Palatine Tonsil/immunology , T-Lymphocyte Subsets/chemistry , T-Lymphocytes, Regulatory/chemistry
14.
Front Immunol ; 9: 196, 2018.
Article in English | MEDLINE | ID: mdl-29541070

ABSTRACT

γδ T cells, known to be an important source of innate IL-17 in mice, provide critical contributions to host immune responses. Development and function of γδ T cells are directed by networks of diverse transcription factors (TFs). Here, we examine the role of the zinc finger TFs, Kruppel-like factor 10 (KLF10), in the regulation of IL-17-committed CD27- γδ T (γδ27--17) cells. We found selective augmentation of Vγ4+ γδ27- cells with higher IL-17 production in KLF10-deficient mice. Surprisingly, KLF10-deficient CD127hi Vγ4+ γδ27--17 cells expressed higher levels of CD5 than their wild-type counterparts, with hyper-responsiveness to cytokine, but not T-cell receptor, stimuli. Thymic maturation of Vγ4+ γδ27- cells was enhanced in newborn mice deficient in KLF10. Finally, a mixed bone marrow chimera study indicates that intrinsic KLF10 signaling is requisite to limit Vγ4+ γδ27--17 cells. Collectively, these findings demonstrate that KLF10 regulates thymic development of Vγ4+ γδ27- cells and their peripheral homeostasis at steady state.


Subject(s)
Early Growth Response Transcription Factors/genetics , Interleukin-17/immunology , Kruppel-Like Transcription Factors/genetics , Receptors, Antigen, T-Cell, gamma-delta/genetics , Signal Transduction , T-Lymphocytes/immunology , Animals , Bone Marrow Cells/immunology , CD5 Antigens/genetics , Gene Expression Regulation , Homeostasis , Interleukin-7 Receptor alpha Subunit/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Tumor Necrosis Factor Receptor Superfamily, Member 7/genetics
15.
Biol Reprod ; 97(1): 69-80, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28859287

ABSTRACT

Chemokines play critical roles in the establishment and maintenance of pregnancy in animals. Cysteine-X-cysteine motif chemokine ligand 9 (CXCL9), CXCL10, and CXCL11 are involved in recruiting immune cells by binding to their shared receptor, CXC receptor 3 (CXCR3), in a variety of tissues. This study examined the expression and regulation of chemokines CXCL9, CXCL10, and CXCL11, their receptor CXCR3, and their role at the maternal-conceptus interface in pigs. The endometrium expressed CXCL9, CXCL10, CXCL11, and CXCR3 stage specifically during pregnancy, with the greatest abundance on Day 15 of pregnancy. It was noted that their expression was primarily localized to stromal cells, endothelial cells, or vascular smooth muscle cells in the endometrium. Interferon-γ increased the abundance of CXCL9, CXCL10, CXCL11 mRNAs, but not CXCR3, in endometrial explants. Furthermore, recombinant CXCL9 (rCXCL9), rCXCL10, and rCXCL11 proteins increased migration of cultured peripheral blood mononuclear cells (PBMCs) in a dose-dependent manner. Recombinant CXCL9 and rCXCL10 caused migration of CD4+, CD8+, CD4+CD8+ T cells, and natural killer (NK) cells, and rCXCL11 increased migration of CD4+ T and NK cells in PBMCs. The present study demonstrated that interferon-γ-induced CXCL9, CXCL10, and CXCL11, and their receptor CXCR3 were expressed in the uterus in stage- and cell-type specific manners and increased the migration of T and NK cells, which showed the greatest endometrial infiltration on Day 15 of pregnancy. These results suggest that CXCL9, CXCL10, and CXCL11 may play an important role in the recruitment of immune cells into the endometrium during the implantation period in pigs.


Subject(s)
Chemokines, CXC/metabolism , Placenta/physiology , Receptors, CXCR3/metabolism , Swine/metabolism , T-Lymphocytes/physiology , Animals , Chemokines, CXC/genetics , Embryo Implantation/drug effects , Endometrium , Estrous Cycle , Female , Gene Expression Regulation, Developmental , Killer Cells, Natural/metabolism , Maternal-Fetal Relations , Pregnancy , Protein Transport , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, CXCR3/genetics , Swine/genetics
16.
Antiviral Res ; 146: 86-95, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28842266

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) invades porcine intestinal epithelial cells (IECs) and causes diarrhea and dehydration in pigs. In the present study, we showed a suppression of PEDV infection in porcine jejunum intestinal epithelial cells (IPEC-J2) by an increase in autophagy. Autophagy was activated by rapamycin at a dose that does not affect cell viability and tight junction permeability. The induction of autophagy was examined by LC3I/LC3II conversion. To confirm the autophagic-flux (entire autophagy pathway), autophagolysosomes were examined by an immunofluorescence assay. Pre-treatment with rapamycin significantly restricted not only a 1 h infection but also a longer infection (24 h) with PEDV, while this effect disappeared when autophagy was blocked. Co-localization of PEDV and autophagosomes suggests that PEDV could be a target of autophagy. Moreover, alleviation of PEDV-induced cell death in IPEC-J2 cells pretreated with rapamycin demonstrates a protective effect of rapamycin against PEDV-induced epithelial cell death. Collectively, the present study suggests an early prevention against PEDV infection in IPEC-J2 cells via autophagy that might be an effective strategy for the restriction of PEDV, and opens up the possibility of the use of rapamycin in vivo as an effective prophylactic and prevention treatment.


Subject(s)
Autophagy , Epithelial Cells/virology , Intestines/virology , Porcine epidemic diarrhea virus/drug effects , Sirolimus/pharmacology , Animals , Antiviral Agents/pharmacology , Cell Death/drug effects , Cell Line , Chlorocebus aethiops , Coronavirus Infections/drug therapy , Epithelial Cells/drug effects , Host-Pathogen Interactions , Intestines/cytology , Intestines/drug effects , Porcine epidemic diarrhea virus/physiology , Swine , Vero Cells
17.
Poult Sci ; 96(5): 1063-1070, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28158799

ABSTRACT

Organic acids have long been known for their beneficial effects on growth performance in domestic animals. However, their impact on immune responses against viral antigens in chickens is unclear. The present study aimed to investigate immunological parameters in broilers immunized with a H9N2 vaccine and/or fed a diet containing organic acids (citric, formic, and lactic acids). We allotted 1-day-old broilers into 4 groups: control (C), fed a diet supplemented with organic acids (O), administered a H9N2 vaccine (V), and fed a diet supplemented with organic acids and administered a H9N2 vaccine (OV). Blood and spleen samples were taken at 2, 7 and 14 d post vaccination (DPV). At 14 DPV, total and H9N2-specific IgG levels were significantly lower in the OV group than in the V group. However, it was intriguing to observe that at 2 DPV, the percentage of CD4+CD25+ T cells was significantly higher in the OV group than in the other groups, indicating the potential induction of regulatory T cells by organic acids. In contrast, at 2 DPV, the percentage of CD4+CD28+ T cells were significantly lower in the OV group than in the other groups, suggesting that CD28 molecules are down-regulated by the treatment. The expression of CD28 on CD4+ T cells, up-regulated by the stimulation with phorbol 12-myristate 13-acetate (PMA) and ionomycin (Iono), was inhibited upon organic acid treatment in OV group. In addition, the proliferation of lymphocytes, stimulated with formalin-inactivated H9N2, was significantly higher in the V group than in the OV group. Alpha 1-acid glycoprotein (AGP) production was significantly lower in the OV group than in the V group, suggesting that the organic acids inhibited the inflammation caused by the vaccination. Overall, induction of regulatory CD4+CD25+ T cells, coinciding with the decrease of H9N2-specific antibodies, was observed in broilers fed organic acids.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Chickens/immunology , Diet/veterinary , Dietary Supplements , Immunoglobulin G/blood , Influenza A Virus, H9N2 Subtype/immunology , Influenza Vaccines/immunology , Interleukin-2 Receptor alpha Subunit/metabolism , T-Lymphocytes/immunology , Animal Nutritional Physiological Phenomena , Animals , Citric Acid/administration & dosage , Formates/administration & dosage , Influenza in Birds/immunology , Influenza in Birds/prevention & control , Lactic Acid/administration & dosage , Spleen/cytology
18.
Asian-Australas J Anim Sci ; 30(4): 505-513, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27608638

ABSTRACT

OBJECTIVE: This study was performed to evaluate whether ambient temperature and dietary glycerol addition affect growth performance, and blood metabolic and immunological parameters, in beef cattle. METHODS: Twenty Korean cattle steers (405.1±7.11 kg of body weight [BW], 14.2±0.15 months of age) were divided into a conventional control diet group (n = 10) and a 2% glycerol- added group (n = 10). Steers were fed 1.6% BW of a concentrate diet and 0.75% BW of a timothy hay diet for 8 weeks (4 weeks from July 28th to August 26th and 4 weeks from August 27th to September 26th). Blood was collected four times on July 28th, August 11th, August 27th, and September 26th. RESULTS: The maximum indoor ambient temperature-humidity index in August (75.8) was higher (p<0.001) than that in September (70.0), and in August was within the mild heat stress (HS) category range previously reported for dairy cattle. The average daily gain (ADG; p = 0.03) and feed efficiency (p<0.001) were higher in hotter August than in September. Glycerol addition did not affect ADG and feed efficiency. Neither month nor glycerol addition affected blood concentrations of cortisol, triglyceride, or non-esterified fatty acid. Blood concentrations of cholesterol, low-density lipoprotein, high-density lipoprotein, glucose, and albumin were lower (p<0.05) on August 27th than on September 26 th, and blood phosphorus, calcium and magnesium concentrations were also lower on August 27th than on September 27th. Glycerol addition did not affect these blood parameters. Percentages of CD4+ T cells and CD8+ T cells were higher (p<0.05) on July 28th than on August 27th and September 26th. The blood CD8+ T cell population was lower in the glycerol supplemented-group compared to the control group on July 28th and August 27th. CONCLUSION: Korean cattle may not be significantly affected by mild HS, considering that growth performance of cattle was better in hotter conditions, although some changes in blood metabolic and mineral parameters were observed.

19.
Anim Sci J ; 88(1): 140-148, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27087166

ABSTRACT

This study examined the effects of road transportation on metabolic and immunological responses in dairy heifers. Twenty Holstein heifers in early pregnancy were divided into non-transported (NT; n = 7) and transported (T; n = 13) groups. Blood was collected before transportation (BT), immediately after transportation for 100 km (T1) and 200 km (T2), and 24 h after transportation (AT). The T heifers had higher (P < 0.05) blood cortisol and non-esterified fatty acid concentrations after T1 and T2 than did NT heifers. By contrast, the T heifers had lower (P < 0.05) serum triglyceride concentrations after T1 and T2 than had the NT heifers. The serum cortisol and triglyceride concentrations returned (P > 0.05) to the BT concentrations at 24 h AT in the T heifers. The granulocyte-to-lymphocyte ratio and the percentage of monocytes were higher (P < 0.05) after T2 in the T heifers than in the NT heifers, suggesting that transportation stress increased the numbers of innate immune cells. T heifers had higher (P < 0.01) plasma haptoglobin concentrations than NT heifers 24 h AT. In conclusion, transportation increased cortisol secretion and was correlated with increased metabolic responses and up-regulation of peripheral innate immune cells in dairy heifers.


Subject(s)
Cattle/immunology , Cattle/metabolism , Hydrocortisone/metabolism , Immunity, Innate/immunology , Stress, Physiological/immunology , Stress, Physiological/physiology , Transportation , Animals , Female , Granulocytes/immunology , Haptoglobins/metabolism , Hydrocortisone/blood , Lymphocytes/immunology , Pregnancy , Time Factors , Triglycerides/blood
20.
Asian-Australas J Anim Sci ; 29(8): 1075-82, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27189643

ABSTRACT

Modern livestock production became highly intensive and large scaled to increase production efficiency. This production environment could add stressors affecting the health and growth of animals. Major stressors can include environment (air quality and temperature), nutrition, and infection. These stressors can reduce growth performance and alter immune systems at systemic and local levels including the gastrointestinal tract. Heat stress increases the permeability, oxidative stress, and inflammatory responses in the gut. Nutritional stress from fasting, antinutritional compounds, and toxins induces the leakage and destruction of the tight junction proteins in the gut. Fasting is shown to suppress pro-inflammatory cytokines, whereas deoxynivalenol increases the recruitment of intestinal pro-inflammatory cytokines and the level of lymphocytes in the gut. Pathogenic and viral infections such as Enterotoxigenic E. coli (ETEC) and porcine epidemic diarrhea virus can lead to loosening the intestinal epithelial barrier. On the other hand, supplementation of Lactobacillus or Saccharaomyces reduced infectious stress by ETEC. It was noted that major stressors altered the permeability of intestinal barriers and profiles of genes and proteins of pro-inflammatory cytokines and chemokines in mucosal system in pigs. However, it is not sufficient to fully explain the mechanism of the gut immune system in pigs under stress conditions. Correlation and interaction of gut and systemic immune system under major stressors should be better defined to overcome aforementioned obstacles.

SELECTION OF CITATIONS
SEARCH DETAIL
...