Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(19): 24308-24320, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38686704

ABSTRACT

Polyphenols have been investigated for their potential to mitigate inflammation in the context of atopic dermatitis (AD). In this study, epigallocatechin-3-gallate (EGCG)-based carbon dots (EGCG@CDs) were developed to enhance transdermal penetration, reduce inflammation, recapitulate superoxide dismutase (SOD) activity, and provide antimicrobial effects for AD treatment. The water-soluble EGCG@CDs in a few nanometers size exhibit a negative zeta potential, making them suitable for effective transdermal penetration. The fluorescence properties, including an upconversion effect, make EGCG@CDs suitable imaging probes for both in vitro and in vivo applications. By mimicking the SOD enzyme, EGCG@CDs scavenge reactive oxygen species (ROS) and actively produce hydrogen peroxide through a highly catalytic capability toward the oxygen reduction reaction, resulting in the inhibition of bacterial growth. The enhanced antioxidant properties, high charge mobility, and various functional groups of EGCG@CDs prove effective in reducing intracellular ROS in an in vitro AD model. In the mouse AD model, EGCG@CDs incorporated into a hydrogel actively penetrated the epidermal layer, leading to ROS scavenging, reduced mast cell activation, and histological recovery of skin barriers. This research represents the versatile potential of EGCG@CDs in addressing AD and advancing tissue engineering.


Subject(s)
Carbon , Catechin , Dermatitis, Atopic , Superoxide Dismutase , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/diagnostic imaging , Animals , Mice , Superoxide Dismutase/metabolism , Superoxide Dismutase/chemistry , Catechin/chemistry , Catechin/analogs & derivatives , Catechin/pharmacology , Carbon/chemistry , Humans , Reactive Oxygen Species/metabolism , Polyphenols/chemistry , Polyphenols/pharmacology , Quantum Dots/chemistry , Quantum Dots/therapeutic use , Antioxidants/chemistry , Antioxidants/pharmacology
2.
Chem Commun (Camb) ; 59(2): 153-169, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36477739

ABSTRACT

As the demand for next-generation electronics is increasing, organic and polymer-based semiconductors are in the spotlight as suitable materials owing to their tailorable structures along with flexible properties. Especially, polyimide (PI) has been widely utilised in electronics because of its outstanding mechanical and thermal properties and chemical resistance originating from its crystallinity, conjugated structure and π-π interactions. PI has recently been receiving more attention in the energy storage and conversion fields due to its unique redox activity and charge transfer complex structure. In this review, we focus on the design of PI structures with improved electrochemical and photocatalytic activities for use as redox-active materials in photo- and electrocatalysts, batteries and supercapacitors. We anticipate that this review will offer insight into the utilisation of redox-active PI-based polymeric materials for the development of future electronics.

3.
Chem Asian J ; 16(24): 4155-4164, 2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34734682

ABSTRACT

Fluorescent carbon nanodots (CDs) have been highlighted as promising semiconducting materials due to their outstanding chemical and optical properties. However, the intrinsic heterogeneity of CDs has impeded a clear understanding of the mechanisms behind their photophysical properties. In this study, as-prepared CDs are fractionated via chromatography to reduce their structural and chemical heterogeneity and analyzed through ensemble and single-particle spectroscopies. Many single particles reveal fluorescence intensity fluctuations between two or more discrete levels with bi-exponential decays. While the intrinsic τ1 components are uniform among single particles, the τ2 components from molecule-like emissions spans a wider range of lifetimes, reflecting the inhomogeneity of the surface states. Furthermore, it is concluded that the relative population and chemical states of surface functional groups in CDs have a significant impact on emissive states, brightness, blinking, stability, and lifetime distribution of photoluminescence.

4.
Children (Basel) ; 8(11)2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34828753

ABSTRACT

Although nusinersen has been demonstrated to improve motor function in patients with spinal muscular atrophy (SMA), no studies have investigated its effect on fine manual dexterity. The present study aimed to investigate the ability of nusinersen to improve fine manual dexterity in patients with SMA type 2. A total of five patients with SMA type 2 were included. The Hammersmith Functional Motor Scale (expanded version) (HFMSE) and Purdue Pegboard (PP) tests were used to evaluate gross motor function and fine manual dexterity, respectively, until 18 months after nusinersen administration. HFMSE scores improved by 3-10 points (+13-53%) in all patients following nusinersen administration. PP scores also improved in all patients, from 4 to 9 points (+80-225%) in the preferred hand and from 3 to 7 points (+60-500%) in the non-preferred hand. These results suggest that nusinersen treatment improved both gross motor function and fine manual dexterity in children with SMA type 2. Addition of the PP test may aid in evaluating the fine manual dexterity essential for activities of daily living in these patients.

5.
Acc Chem Res ; 54(1): 57-69, 2021 01 05.
Article in English | MEDLINE | ID: mdl-33172254

ABSTRACT

Growing environmental concern has increased the demand for clean energy, and various technologies have been developed to utilize renewable energy sources. With the development of highly efficient energy conversion and storage systems, fundamental studies on the electrochemistry of electrodes are critical because the functionality of most of these systems relies on interfacial electrochemical reactions that occur on the surfaces of the electrodes. In this context, efficient electrode design methods are required to study specific electrochemical principles and the mechanisms of interfacial reactions on the surface of electrodes.Compared with other electrode fabrication methods, layer-by-layer (LbL) assembly is a simple, inexpensive, and versatile process for producing highly ordered multilayer thin-film electrodes from a diverse array of materials. LbL-assembled multilayer electrodes exhibit distinct electrochemical properties compared with electrodes created via other fabrication methods because of the nanoscale control of the composition and structures of electrodes afforded by LbL assembly. LbL assembly can generate unique nanoarchitectures from a multiplicity of electroactive components to investigate the detailed electrochemical mechanisms within the electrode, allowing for investigations of the internal-architecture-dependent electrochemical properties within the electrodes. As electrochemical LbL research has progressed over the last 10 years, our group has performed pioneering studies on the fundamental electrochemical properties of multilayer electrodes fabricated via LbL assembly for diverse energy applications. In this Account, we aim to outline the fundamental electrochemistry occurring at the nanoscale level on multilayer thin-film LbL electrodes using our work to illustrate these concepts, including the dependence of the electrochemistry on the thickness and architecture of multilayer electrodes, competition between mass and charge transfer, and control over the ion-permeation selectivity and interfacial dipole moments in multilayer electrodes. We anticipate that our approach to LbL-assembled electrodes will be of great interest and provide an attractive platform for the investigation of fundamental multilayer thin-film electrochemistry. We also believe that it will provide guidelines for research efforts toward future electrode engineering.

6.
ACS Nano ; 14(6): 6812-6822, 2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32490662

ABSTRACT

Water electrocatalytic splitting is considered as an ideal process for generating H2 without byproducts. However, in the water-splitting reaction, a high overpotential is needed to overcome the high-energy barrier due to the slow kinetics of the oxygen evolution reaction (OER). In this study, we selected the 5-hydroxymethylfurfural (HMF) oxidation reaction, which is thermodynamically favored, to replace the OER in the water-splitting process. We fabricated three-dimensional hybrid electrocatalytic electrodes via layer-by-layer (LbL) assembly for simultaneous HMF conversion and hydrogen evolution reaction (HER) to investigate the effect of the nanoarchitecture of the electrode on the electrocatalytic activity. Nanosized graphene oxide was used as a negatively charged building block for LbL assembly to immobilize the two electroactive components: positively charged Au and Pd nanoparticles (NPs). The internal architecture of the LbL-assembled multilayer electrodes could be precisely controlled and their electrocatalytic performance could be modified by changing the nanoarchitecture of the electrode, including the thickness and position of the metal NPs. Even with a composition of the identical constituent NPs, the electrodes exhibited highly tunable electrocatalytic performance depending on the reaction kinetics as well as a diffusion-controlled process due to the sequential HMF oxidation and the HER. Furthermore, a bifunctional two-electrode electrolyzer for both the anodic HMF oxidation and the cathodic HER, which had an optimized LbL-assembled electrode for each reaction, exhibited the best full-cell electrocatalytic activity.

7.
ACS Appl Mater Interfaces ; 12(21): 24479-24487, 2020 May 27.
Article in English | MEDLINE | ID: mdl-32368903

ABSTRACT

Long-term stability of the solid electrolyte interphase (SEI) and cathode-electrolyte interface (CEI) layers formed on anodes and cathodes is imperative to mitigate the interfacial degradation of electrodes and enhance the cycle life of lithium-ion batteries (LIBs). However, the SEI on the anode and CEI on the cathode are vulnerable to the reactive species of PF5 and HF produced by the decomposition and hydrolysis of the conventional LiPF6 electrolyte in a battery inevitably containing a trace amount of water. Here, we report a new class of cyclic carbonate-based electrolyte additives to preserve the integrity of SEI and CEI in LIBs. This new class of additives is designed and synthesized by an ecofriendly approach that involves fixing CO2 with functional epoxides bearing various reactive side chains. It was found that the cyclic carbonates of 3-(1-ethoxyethoxy)-1,2-propylene carbonate and 3-trimethoxysilylpropyloxy-1,2-propylene carbonate, possessing high capability for the stabilization of Lewis-acidic PF5, exhibit a capacity retention of 79.0% after 1000 cycles, which is superior to that of the pristine electrolyte of 54.7%. Moreover, TMSPC has HF-scavenging capability, which, along with PF5 stabilization, results in enhanced rate capability of commercial LiNi0.6Mn0.2Co0.2O2 (NCM622)/graphite full cells, posing a significant potential for high-energy-density LIBs with long cycle stability.

8.
Nanoscale Adv ; 2(3): 1236-1244, 2020 Mar 17.
Article in English | MEDLINE | ID: mdl-36133034

ABSTRACT

Self-assembled supraparticles (SPs), a secondary structure of clustered nanoparticles, have attracted considerable interest owing to their highly tunable structure, composition, and morphology from their primary nanoparticle constituents. In this study, hierarchically assembled hollow Cu2O SPs were prepared using a cationic polyelectrolyte poly(diallyl dimethylammonium chloride) (PDDA) during the formation of Cu2O nanoparticles. The concentration-dependent structural transformation of PDDA from linear chains to assembled droplets plays a crucial role in forming a hollow colloidal template, affording the self-assembly of Cu2O nanoparticles as a secondary surfactant. The use of the positively charged PDDA also affords negatively charged nanoscale graphene oxide (NGO), an electrical and mechanical supporter to uniformly coat the surface of the hollow Cu2O SPs. Subsequent thermal treatment to enhance the electrical conductivity of NGO within the NGO/Cu2O SPs allows for the concomitant phase transformation of Cu2O to CuO, affording reduced NGO/CuO (RNGO/CuO) SPs. The uniquely structured hollow RNGO/CuO SPs achieve improved electrochemical properties by providing enhanced electrical conductivity and electroactive surface area.

9.
Sci Adv ; 5(7): eaaw1879, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31360766

ABSTRACT

Stretchable conductors are essential components in next-generation deformable and wearable electronic devices. The ability of stretchable conductors to achieve sufficient electrical conductivity, however, remains limited under high strain, which is particularly detrimental for charge storage devices. In this study, we present stretchable conductors made from multiple layers of gradient assembled polyurethane (GAP) comprising gold nanoparticles capable of self-assembly under strain. Stratified layering affords control over the composite internal architecture at multiple scales, leading to metallic conductivity in both the lateral and transversal directions under strains of as high as 300%. The unique combination of the electrical and mechanical properties of GAP electrodes enables the development of a stretchable lithium-ion battery with a charge-discharge rate capability of 100 mAh g-1 at a current density of 0.5 A g-1 and remarkable cycle retention of 96% after 1000 cycles. The hierarchical GAP nanocomposites afford rapid fabrication of advanced charge storage devices.

10.
ACS Nano ; 13(1): 467-475, 2019 Jan 22.
Article in English | MEDLINE | ID: mdl-30512922

ABSTRACT

An efficient water oxidation photoanode based on hematite has been designed and fabricated by tailored assembly of graphene oxide (GO) nanosheets and cobalt polyoxometalate (Co-POM) water oxidation catalysts into a nacre-like multilayer architecture on a hematite photoanode. The deposition of catalytic multilayers provides a high photocatalytic efficiency and photoelectrochemical stability to underlying hematite photoanodes. Compared to the bare counterpart, the catalytic multilayer electrode exhibits a significantly higher photocurrent density and large cathodic shift in onset potential (∼369 mV) even at neutral pH conditions due to the improved charge transport and catalytic efficiency from the rational and precise assembly of GO and Co-POM. Unexpectedly, the polymeric base layer deposited prior to the catalytic multilayers improves the performance even more by facilitating the transfer of photogenerated holes for water oxidation through modification of the flat band potential of the underlying photoelectrode. This approach utilizing polymeric base and catalytic multilayers provides an insight into the design of highly efficient photoelectrodes and devices for artificial photosynthesis.

11.
Nanoscale ; 10(34): 16159-16168, 2018 Aug 30.
Article in English | MEDLINE | ID: mdl-30118131

ABSTRACT

Controlling the architecture of hybrid nanomaterial electrodes is critical for understanding their fundamental electrochemical mechanisms and applying these materials in future energy conversion and storage systems. Herein, we report highly tunable electrocatalytic multilayer electrodes, composed of palladium nanoparticles (Pd NPs) supported by graphene sheets of varying lateral sizes, employing a versatile layer-by-layer (LbL) assembly method. We demonstrate that the electrocatalytic activity is highly tunable through the control of the diffusion and electron pathways within the 3-dimensional multilayer electrodes. A larger-sized-graphene-supported electrode exhibited its maximum performance with a thinner film, due to facile charge transfer by the mass transfer limited in the early stage, while a smaller-sized-graphene-supported electrode exhibited its highest current density with higher mass loading in the thicker films by enabling facile mass transfer through increased diffusion pathways. These findings of the tortuous-path effect on the electrocatalytic electrode supported by varying sized graphene provide new insights and a novel design principle into electrode engineering that will be beneficial for the development of effective electrocatalysts.

12.
ACS Appl Mater Interfaces ; 9(46): 40151-40161, 2017 Nov 22.
Article in English | MEDLINE | ID: mdl-29099571

ABSTRACT

Artificial photosynthesis is considered one of the most promising solutions to modern energy and environmental crises. Considering that it is enabled by multiple components through a series of photoelectrochemical processes, the key to successful development of a photosynthetic device depends not only on the development of novel individual components but also on the rational design of an integrated photosynthetic device assembled from them. However, most studies have been dedicated to the development of individual components due to the lack of a general and simple method for the construction of the integrated device. In the present study, we report a versatile and simple method to prepare an efficient and stable photoelectrochemical device via controlled assembly and integration of functional components on the nanoscale using the layer-by-layer (LbL) assembly technique. As a proof of concept, we could successfully build a photoanode for solar water oxidation by depositing a thin film of diverse cationic polyelectrolytes and anionic polyoxometalate (molecular metal oxide) water oxidation catalysts on the surface of various photoelectrode materials (e.g., Fe2O3, BiVO4, and TiO2). It was found that the performance of photoanodes was significantly improved after the deposition in terms of stability as well as photocatalytic properties, regardless of types of photoelectrodes and polyelectrolytes employed. Considering the simplicity and versatile nature of LbL assembly techniques, our approach can contribute to the realization of artificial photosynthesis by enabling the design of novel photosynthetic devices.

13.
Nano Lett ; 16(9): 5533-41, 2016 09 14.
Article in English | MEDLINE | ID: mdl-27383666

ABSTRACT

Alternative materials obtained from natural resources have recently garnered considerable attention as an innovative solution to bring unprecedented advances in various energy storage systems. Here, we present a new class of heterolayered nanomat-based hierarchical/asymmetric porous membrane with synergistically coupled chemical activity as a nanocellulose-mediated green material strategy to develop smart battery separator membranes far beyond their current state-of-the-art counterparts. This membrane consists of a terpyridine (TPY)-functionalized cellulose nanofibril (CNF) nanoporous thin mat as the top layer and an electrospun polyvinylpyrrolidone (PVP)/polyacrylonitrile (PAN) macroporous thick mat as the support layer. The hierarchical/asymmetric porous structure of the heterolayered nanomat is rationally designed with consideration of the trade-off between leakage current and ion transport rate. The TPY (to chelate Mn(2+) ions) and PVP (to capture hydrofluoric acid)-mediated chemical functionalities bring a synergistic coupling in suppressing Mn(2+)-induced adverse effects, eventually enabling a substantial improvement in the high-temperature cycling performance of cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...