Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Lung Cell Mol Physiol ; 312(3): L326-L333, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28062485

ABSTRACT

Bitter taste receptors (T2Rs), a G protein-coupled receptor family capable of detecting numerous bitter-tasting compounds, have recently been shown to be expressed and play diverse roles in many extraoral tissues. Here we report the functional expression of T2Rs in rat pulmonary sensory neurons. In anesthetized spontaneously breathing rats, intratracheal instillation of T2R agonist chloroquine (10 mM, 0.1 ml) significantly augmented chemoreflexes evoked by right-atrial injection of capsaicin, a specific activator for transient receptor potential vanilloid receptor 1 (TRPV1), whereas intravenous infusion of chloroquine failed to significantly affect capsaicin-evoked reflexes. In patch-clamp recordings with isolated rat vagal pulmonary sensory neurons, pretreatment with chloroquine (1-1,000 µM, 90 s) concentration dependently potentiated capsaicin-induced TRPV1-mediated inward currents. Preincubating with diphenitol and denatonium (1 mM, 90 s), two other T2R activators, also enhanced capsaicin currents in these neurons but to a lesser extent. The sensitizing effect of chloroquine was effectively prevented by the phospholipase C inhibitor U73122 (1 µM) or by the protein kinase C inhibitor chelerythrine (10 µM). In summary, our study showed that activation of T2Rs augments capsaicin-evoked TRPV1 responses in rat pulmonary nociceptors through the phospholipase C and protein kinase C signaling pathway.


Subject(s)
Lung/metabolism , Nociceptors/metabolism , Protein Kinase C/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/drug effects , TRPV Cation Channels/metabolism , Taste , Type C Phospholipases/metabolism , Anesthesia , Animals , Benzophenanthridines/pharmacology , Capsaicin/pharmacology , Chloroquine/administration & dosage , Chloroquine/pharmacology , Estrenes/pharmacology , Infusions, Intravenous , Pyrrolidinones/pharmacology , Rats, Sprague-Dawley , Reflex/drug effects , Respiration/drug effects , Sensory Receptor Cells/drug effects , Sensory Receptor Cells/metabolism , Taste/drug effects , Type C Phospholipases/antagonists & inhibitors
2.
Front Physiol ; 7: 65, 2016.
Article in English | MEDLINE | ID: mdl-26973533

ABSTRACT

Transient receptor potential vanilloid receptor 4 (TRPV4) is a calcium-permeable non-selective cation channel implicated in numerous physiological and pathological functions. This study aimed to investigate the effect of TRPV4 activation on respiration and to explore the potential involvement of bronchopulmonary sensory neurons. Potent TRPV4 agonist GSK1016790A was injected into right atrium in anesthetized spontaneously breathing rats and the changes in breathing were measured. Patch-clamp recording was performed to investigate the effect of GSK1016790A or another TRPV4 activator 4α-PDD on cultured rat vagal bronchopulmonary sensory neurons. Immunohistochemistry was carried out to determine the TRPV4-expressing cells in lung slices obtained from TRPV4-EGFP mice. Our results showed, that right-atrial injection of GSK1016790A evoked a slow-developing, long-lasting rapid shallow breathing in anesthetized rats. Activation of TRPV4 also significantly potentiated capsaicin-evoked chemoreflex responses. The alteration in ventilation induced by GSK1016790A was abolished by cutting or perineural capsaicin treatment of both vagi, indicating the involvement of bronchopulmonary afferent neurons. The stimulating and sensitizing effects of GSK1016790A were abolished by a selective TRPV4 antagonist GSK2193874 and also by inhibiting cyclooxygenase with indomethacin. Surprising, GSK1016790A or 4α-PDD did not activate isolated bronchopulmonary sensory neurons, nor did they modulate capsaicin-induced inward currents in these neurons. Furthermore, TRPV4 expression was found in alveolar macrophages, alveolar epithelial, and vascular endothelial cells. Collectively, our results suggest that GSK1016790A regulates the respiration through an indirect activation of bronchopulmonary sensory neurons, likely via its stimulation of other TRPV4-expressing cells in the lungs and airways.

SELECTION OF CITATIONS
SEARCH DETAIL
...