Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
PLoS One ; 17(8): e0269014, 2022.
Article in English | MEDLINE | ID: mdl-35960707

ABSTRACT

High salt intake is positively linked to many health problems, but the effect of mineral-rich sea salt (SS) has rarely been studied. To better understand the physiological effects of SS intake, the changes in general characteristics, metabolites, steroid hormones, and gut microbiota of SS-fed rats were investigated. Male rats were fed either a normal diet (ND, control) or ND containing 1% SS or 4% SS for 5 weeks. SS intake decreased fat, spleen, liver, and body weight, and increased blood urea nitrogen (BUN), water intake, and gut salt content. Accumulated gut salt content led to a decrease in beneficial bacteria, such as Lachnospiraceae and Lactobacillus, but an increase in potentially harmful bacteria, resulting in a change in lipid metabolites associated with gut health. Interestingly, most renal lysophosphatidylcholines (LPCs) associated with many renal functions were dramatically decreased and female hormones, such as estrogens, were significantly more altered than the male hormones by high SS intake. Although further investigation is needed, these data suggest that high SS intake could be positively linked to kidney dysfunction and gut health problems, and salt-related physiological changes may be sex-specific. Additionally, these data will be useful to better under-stand the physiological effects of SS intake.


Subject(s)
Gastrointestinal Microbiome , Animals , Female , Hormones/metabolism , Kidney/metabolism , Male , Rats , Sodium Chloride/pharmacology , Sodium Chloride, Dietary/pharmacology , Steroids/metabolism
2.
J Food Sci Technol ; 57(1): 263-273, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31975729

ABSTRACT

Perilla seed powder (PSP) was stored at 25 °C, 35 °C, and 45 °C for 8 weeks. Changes in the metabolite profiles of the powders, including fatty acids, were monitored. Correlations between these changes and quality parameters, including lipid oxidation, color, and antioxidant activity, were analyzed to evaluate the effects of storage duration and temperature on PSP quality. Acid values increased significantly with the duration of storage, but not with temperature. Multivariate statistical analysis was performed to identify differences among the metabolite profiles. The PSP sample stored for 1 week at 45 °C and all samples stored at 25 °C and 35 °C were grouped separately from the control and samples stored at 45 °C for more than 4 weeks. Among the many metabolites associated with these differences, lysophosphatidylethanolamines, tocopherol, sitosterol, tryptophan, 12-hydroxyjasmonic acid glucoside, and maltose correlated negatively with quality parameters with the exception of L* and antioxidant activity. Luteolin, apigenin, luteolin 4'-methyl ester, citric acid, isocitric acid, 9(S)-HPODE, and 3,5-octadien-2-one correlated positively with quality. Although the quantities of some antioxidants and lipids decreased during storage, the results suggested that the quality of PSP samples stored at 25 °C, 35 °C, and 45 °C for 8 weeks was acceptable. This was because lipid oxidation promoted by the storage environment was limited by antioxidants in the samples. These metabolites could be useful for monitoring changes in PSP quality.

SELECTION OF CITATIONS
SEARCH DETAIL