Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 163
Filter
1.
J Pharmacol Exp Ther ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38772718

ABSTRACT

The high prevalence of breast cancer is a global health concern, but there are no safe or effective treatments for it at its advanced stages. These facts urge the development of novel treatment strategies. Annexin A5 (ANXA5) is a natural human protein that binds with high specificity to phosphatidylserine, a phospholipid tightly maintained in the inner leaflet of the cell membrane on most healthy cells but externalized in tumor cells and the tumor vasculature. Here, we have developed a targeted photosensitizer for photothermal therapy (PTT) of solid tumors through the functionalization of single walled carbon nanotubes (SWCNTs) to ANXA5-the SWCNT-ANXA5 conjugate. The ablation of tumors through the SWCNT-ANXA5-mediated PTT synergizes with checkpoint inhibition, creating a systemic anti-cancer immune response. In vitro ablation of cells incubated with the conjugate promoted cell death in a dose-dependent and targeted manner. This treatment strategy was tested in vivo with the orthotopic EMT6 breast tumor model in female balb/cJ mice. Enhanced therapeutic effects were achieved by using intratumoral injection of the conjugate and treating tumors at a lower PTT temperature (45oC). Intratumoral injection prevented the accumulation of the SWCNTs in major clearance organs. When combined with checkpoint inhibition of anti-PD-1, SWCNT-ANXA5-mediated PTT increased survival and 80% of the mice survived for 100 days. Evidence of immune system activation by flow cytometry of splenic cells strengthens the hypothesis of an abscopal effect as a mechanism of prolonged survival. Significance Statement This study demonstrated a relatively high survival rate (80% at 100 days) of mice with aggressive breast cancer when treated with photothermal therapy using the SWCNT-ANXA5 conjugate injected intratumorally and combined with immune stimulation using the anti-PD-1 checkpoint inhibitor. Photothermal therapy was accomplished by maintaining the tumor temperature at a relatively low level of 45oC and avoiding accumulation of the nanotubes in the clearance organs by using intratumoral administration.

2.
Nat Commun ; 15(1): 4347, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773146

ABSTRACT

Epigenetic mechanisms bridge genetic and environmental factors that contribute to the pathogenesis of major depression disorder (MDD). However, the cellular specificity and sensitivity of environmental stress on brain epitranscriptomics and its impact on depression remain unclear. Here, we found that ALKBH5, an RNA demethylase of N6-methyladenosine (m6A), was increased in MDD patients' blood and depression models. ALKBH5 in astrocytes was more sensitive to stress than that in neurons and endothelial cells. Selective deletion of ALKBH5 in astrocytes, but not in neurons and endothelial cells, produced antidepressant-like behaviors. Astrocytic ALKBH5 in the mPFC regulated depression-related behaviors bidirectionally. Meanwhile, ALKBH5 modulated glutamate transporter-1 (GLT-1) m6A modification and increased the expression of GLT-1 in astrocytes. ALKBH5 astrocyte-specific knockout preserved stress-induced disruption of glutamatergic synaptic transmission, neuronal atrophy and defective Ca2+ activity. Moreover, enhanced m6A modification with S-adenosylmethionine (SAMe) produced antidepressant-like effects. Our findings indicate that astrocytic epitranscriptomics contribute to depressive-like behaviors and that astrocytic ALKBH5 may be a therapeutic target for depression.


Subject(s)
AlkB Homolog 5, RNA Demethylase , Astrocytes , Depressive Disorder, Major , Mice, Knockout , Animals , Astrocytes/metabolism , AlkB Homolog 5, RNA Demethylase/metabolism , AlkB Homolog 5, RNA Demethylase/genetics , Mice , Humans , Depressive Disorder, Major/metabolism , Depressive Disorder, Major/genetics , Depressive Disorder, Major/pathology , Male , Female , Disease Models, Animal , Mice, Inbred C57BL , Neurons/metabolism , Stress, Psychological/metabolism , Adenosine/analogs & derivatives , Adenosine/metabolism , Excitatory Amino Acid Transporter 2/metabolism , Excitatory Amino Acid Transporter 2/genetics , Behavior, Animal , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , Depression/metabolism , Depression/genetics , Adult , Synaptic Transmission , Middle Aged
3.
Microorganisms ; 12(5)2024 May 09.
Article in English | MEDLINE | ID: mdl-38792787

ABSTRACT

The only reliable factor that reduces the risk of colorectal carcinogenesis is physical activity. However, the underlying mechanisms remain unclear. In this study, we examined the effects of physical activity against gut microbiota, including mucosa-associated microbiota (MAM) on azoxymethane-induced colorectal tumors in obese mice. We divided the subjects into four groups: normal diet (ND), high-fat diet (HFD), ND + exercise (Ex), and HFD + Ex groups. The Ex group performed treadmill exercise for 20 weeks. Thereafter, fecal and colonic mucus samples were extracted for microbiota analysis. DNA was collected from feces and colonic mucosa, and V3-V4 amplicon sequencing analysis of the 16SrRNA gene was performed using MiSeq. The HFD group had significantly more colonic polyps than the ND group (ND 6.5 ± 1.3, HFD 11.4 ± 1.5, p < 0.001), and the addition of Ex suppressed the number of colonic polyps in ND and HFD groups (ND 6.5 ± 1.3, ND + Ex 2.8 ± 2.5, p < 0.05). The HFD group showed significantly lower concentrations of succinic, acetic, butyric, and propionic acids (mg/g) in feces, compared with the ND group (succinic acid HFD 0.59, ND 0.17; acetic acid HFD 0.63, ND 2.41; propionic acid HFD 0.10, ND 0.47; and N-butyric acid HFD 0.31, ND 0.93). In the case of ND, succinic acid and butyric acid tended to decrease with Ex (succinic acid ND 0.17, ND + Ex 0.12; N-butyric acid ND 0.93, ND + Ex 0.74 0.74). Succinic acid, acetic acid, butyric acid, and propionic acid levels in feces were significantly lower in the HFD group than in the ND group; in both feces and mucus samples, Butyricicoccus and Lactobacillus levels were significantly lower in the HFD group. Akkermansia was significantly increased in ND + Ex and HFD + Ex groups. Diet and exercise affected the number of colorectal tumors. Furthermore, diet and exercise alter intestinal MAM, which may be involved in colorectal tumor development.

4.
Int J Food Microbiol ; 416: 110665, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38457887

ABSTRACT

Romaine lettuce in the U.S. is primarily grown in California or Arizona and either processed near the growing regions (source processing) or transported long distance for processing in facilities serving distant markets (forward processing). Recurring outbreaks of Escherichia coli O157:H7 implicating romaine lettuce in recent years, which sometimes exhibited patterns of case clustering in Northeast and Midwest, have raised industry concerns over the potential impact of forward processing on romaine lettuce food safety and quality. In this study, freshly harvested romaine lettuce from a commercial field destined for both forward and source processing channels was tracked from farm to processing facility in two separate trials. Whole-head romaine lettuce and packaged fresh-cut products were collected from both forward and source facilities for microbiological and product quality analyses. High-throughput amplicon sequencing targeting16S rRNA gene was performed to describe shifts in lettuce microbiota. Total aerobic bacteria and coliform counts on whole-head lettuce and on fresh-cut lettuce at different storage times were significantly (p < 0.05) higher for those from the forward processing facility than those from the source processing facility. Microbiota on whole-head lettuce and on fresh-cut lettuce showed differential shifting after lettuce being subjected to source or forward processing, and after product storage. Consistent with the length of pre-processing delays between harvest and processing, the lettuce quality scores of source-processed romaine lettuce, especially at late stages of 2-week storage, was significantly higher than of forward-processed product (p < 0.05).


Subject(s)
Escherichia coli O157 , Microbiota , Food Microbiology , Lactuca , Escherichia coli O157/genetics , Food Safety , Colony Count, Microbial , Food Handling , Food Contamination/analysis
5.
J Colloid Interface Sci ; 660: 534-544, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38266335

ABSTRACT

Suppression of vascular cell senescence is of great significance in preventing cardiovascular diseases such as hypertension and atherosclerosis. The oxidative stress damage caused by reactive oxygen species (ROS) can lead to cellular senescence. Rapamycin (Rapa) is well known to suppress cell senescence via mammalian target of rapamycin (mTOR) pathway. However, poor water solubility and lack of ROS scavenging ability limit the further development of Rapa. To improve the solubility of Rapa and endow with ROS scavenging ability, Rapa functionalized carbon dots (Rapa-CDs) are target-oriented synthesized via free radical polymerization combination with hydrothermal carbonization. Rapa-CDs improve the solubility of Rapa and show ROS scavenging abilities. The solubility of Rapa-CDs with 9.41 g is improved 3.6 × 104 times higher than that of Rapa (2.6 × 10-4 g). The half maximal inhibitory concentration (IC50) of Rapa-CDs toward hydroxyl radical (•OH) and 2,2-Diphenyl-1-picrylhydrazyl free radical (DPPH•) are 0.18 and 0.17 mg/mL, respectively. Rapa-CDs show anti-oxidative stress effect in HEVECs (Human Umbilical Vein Endothelial Cells) via reducing ROS levels by 87 %. Rapa-CDs alleviate HUVECs senescence by suppressing mTOR overactivation, attenuate the expression of P53, P21 and P16. The study demonstrates the target-oriented synthesis of drugs functionalized CDs with anti-senescence via dual-pathway of anti-oxidative stress and mTOR.


Subject(s)
Signal Transduction , Sirolimus , Humans , Signal Transduction/physiology , Reactive Oxygen Species/metabolism , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/pharmacology , Human Umbilical Vein Endothelial Cells/metabolism , Cellular Senescence , Carbon/pharmacology
6.
Nat Methods ; 21(2): 170-181, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37710020

ABSTRACT

Images document scientific discoveries and are prevalent in modern biomedical research. Microscopy imaging in particular is currently undergoing rapid technological advancements. However, for scientists wishing to publish obtained images and image-analysis results, there are currently no unified guidelines for best practices. Consequently, microscopy images and image data in publications may be unclear or difficult to interpret. Here, we present community-developed checklists for preparing light microscopy images and describing image analyses for publications. These checklists offer authors, readers and publishers key recommendations for image formatting and annotation, color selection, data availability and reporting image-analysis workflows. The goal of our guidelines is to increase the clarity and reproducibility of image figures and thereby to heighten the quality and explanatory power of microscopy data.


Subject(s)
Checklist , Publishing , Reproducibility of Results , Image Processing, Computer-Assisted , Microscopy
7.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 35(11): 1200-1206, 2023 Nov.
Article in Chinese | MEDLINE | ID: mdl-37987132

ABSTRACT

OBJECTIVE: To investigate the role and underlying mechanism of human myeloid differentiation protein 2 (MD2) in the process of neuronal death induced by lipopolysaccharide (LPS) by establishing an in vitro model of sepsis-associated encephalopathy (SAE) by LPS. METHODS: Healthy C57BL/6J mice at 14-18 days of gestation were selected, and brain cortical tissue was taken from fetal mice. Neurons were stimulated with 0 (control), 1, 5 and 10 g/L of LPS for 24 hours. The release of lactate dehydrogenase (LDH) was detected and the death of neurons was observed. Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of inflammatory factors interleukins (IL-6, IL-1ß), in order to determine the optimal dose of LPS for establishing an in vitro neuroinflammation model of SAE. The cells were divided into blank control group and LPS group. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeling (TUNEL) was used to discover apoptosis. Western blotting was used to detect the expression of the relevant protein markers activated caspase-3, necroptosis-associated protein neuronal receptor-interacting serine/threonine-protein kinase 3 (RIPK3) and phosphorylated RIPK3 (p-RIPK3). Immunofluorescence chemical staining was used to detect the expressions of p-RIPK3 and microtubule-associated protein 2 (MAP2) to evaluate the type of cell death and the degree of neuronal death. Western blotting was used to detect MD2 expression. Immunofluorescence chemical staining was performed to observe the expression and distribution of p-RIPK3 and MD2 in neurons to assess whether MD2 was involved in the inflammatory response promoting neuronal death. In addition, the cells were divided into blank control group, LPS group, and MD2 interfering peptide group (LPS+TC group), and the levels of IL-6, IL-1ß and LDH were detected to evaluate whether interfering with MD2 can alleviate LPS induced neuroinflammation. RESULTS: 10 g/L LPS induced notable neuronal death, and the release of LDH in neurons stimulated with this concentration for 24 hours was significantly higher than that in the blank control group (relative release: 1.45±0.04 vs. 1.00±0.00, P < 0.01), indicating apoptosis and necroptosis occurred in neurons, and the levels of inflammatory factors IL-6 and IL-1ß were remarkable increased [IL-6 (relative level): 1.94±0.04 vs. 1.00±0.00, IL-1ß (relative level): 1.53±0.09 vs. 1.00±0.00, both P < 0.01]. Compared with the blank control group, the apoptosis of cells, cleaved-caspase-3 expression, the p-RIPK3/RIPK3 ratio, and p-RIPK3 expression around neurons in the LPS group were significantly increased [cleaved-caspase-3/GAPDH: 1.55±0.10 vs. 1.00±0.00, P < 0.01; p-RIPK3/RIPK3 ratio (relative value): 1.54±0.06 vs. 1.00±0.00, P < 0.05], which suggested that typical apoptosis and necroptosis apoptosis occurred in neurons in the septic environment. Furthermore, MD2 expression was significantly increased in the LPS group compared with the blank control group (MD2/GAPDH: 1.91±0.07 vs. 1.00±0.00, P < 0.01), and MD2 expression around neurons was increased, indicating that LPS-induced MD2 upregulation may play a key role in neuroinflammation and induction of neuronal death in sepsis. In addition, compared with the LPS group, the MD2-interfering peptide could reduce the expression levels of inflammatory factors IL-6 and IL-1ß [IL-6 (relative level): 1.16±0.08 vs. 1.94±0.04, IL-1ß (relative level): 1.15±0.05 vs. 1.75±0.09, both P < 0.01] and decrease LDH release (relative release: 1.09±0.01 vs. 1.44±0.04, P < 0.05). CONCLUSIONS: LPS induced neuronal inflammatory responses via MD2, which ultimately leads to apoptosis and necroptosis. Interfering with MD2 reduces inflammation and inhibits neuronal death.


Subject(s)
Sepsis-Associated Encephalopathy , Mice , Humans , Animals , Caspase 3 , Interleukin-6 , Neuroinflammatory Diseases , Lipopolysaccharides , Mice, Inbred C57BL , Cell Differentiation , Tumor Necrosis Factor-alpha
8.
Sensors (Basel) ; 23(20)2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37896539

ABSTRACT

It is of great significance to study the thermal radiation anomalies of earthquake swarms in the same area in terms of selecting abnormal characteristic determination parameters, optimizing and determining the processing model, and understanding the abnormal machine. In this paper, we investigated short-term and long-term thermal radiation anomalies induced by earthquake swarms in Iran and Pakistan between 2007 and 2016. The anomalies were extracted from infrared remote sensing black body temperature data from the China Geostationary Meteorological Satellites (FY-2C/2E/2F/2G) using the multiscale time-frequency relative power spectrum (MS T-FRPS) method. By analyzing and summarizing the thermal radiation anomalies of series earthquake groups with consistency law through a stable and reliable MS T-FRPS method, we first obtained the relationship between anomalies and ShakeMaps from USGS and proposed the anomaly regional indicator (ARI) to determine seismic anomalies and the magnitude decision factor (MDF) to determine seismic magnitude. In addition, we explored the following discussions: earthquake impact on regional thermal radiation background and the relationship between thermal anomalies and earthquake magnitude and the like. Future research directions using the MS T-FRPS method to characterize regional thermal radiation anomalies induced by strong earthquakes could help improve the accuracy of earthquake magnitude determination.

9.
Redox Rep ; 28(1): 2241615, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37530134

ABSTRACT

Fecal microbiota is a significant factor determining the cause, course, and prognosis of Crohn's disease (CD). However, the factors affecting mucosa-associated microbiota (MAM) remain unclear. This retrospective study examined the differences in ileal MAM between CD patients and healthy controls and investigated the factors affecting MAM in CD patients to clarify potential therapeutic targets. Ileal MAM was obtained using brush forceps during endoscopic examination from 23 healthy controls and 32 CD patients (most were in remission). The samples' microbiota was profiled using the Illumina MiSeq platform. Compared to controls, CD patients had significantly reduced α-diversity in the ileum and a difference in ß-diversity. The abundance of butyric acid-producing bacteria in the ileal MAM was significantly lower in CD patients with a history of abdominal surgery than in those without. Because butyric acid is a major energy source in the intestinal epithelium, its metabolism via ß-oxidation increases oxygen consumption in epithelial cells, reducing oxygen concentration in the intestinal lumen and increasing the abundance of obligate anaerobic bacteria. The suppression of obligate anaerobes in CD patients caused an overgrowth of facultative anaerobes. Summarily, reducing the abundance of butyric acid-producing bacteria in the ileal MAM may play an important role in CD pathophysiology.


Subject(s)
Crohn Disease , Gastrointestinal Microbiome , Microbiota , Humans , Crohn Disease/surgery , Crohn Disease/drug therapy , Crohn Disease/microbiology , Butyric Acid/therapeutic use , Retrospective Studies , Ileum/surgery , Ileum/microbiology , Bacteria , Intestinal Mucosa
11.
Micromachines (Basel) ; 14(4)2023 Mar 25.
Article in English | MEDLINE | ID: mdl-37420964

ABSTRACT

A passive wireless sensor is designed for real-time monitoring of a high temperature environment. The sensor is composed of a double diamond split rings resonant structure and an alumina ceramic substrate with a size of 23 × 23 × 0.5 mm3. The alumina ceramic substrate is selected as the temperature sensing material. The principle is that the permittivity of the alumina ceramic changes with the temperature and the resonant frequency of the sensor shifts accordingly. Its permittivity bridges the relation between the temperature and resonant frequency. Therefore, real time temperatures can be measured by monitoring the resonant frequency. The simulation results show that the designed sensor can monitor temperatures in the range 200~1000 °C corresponding to a resonant frequency of 6.79~6.49 GHz with shifting 300 MHz and a sensitivity of 0.375 MHz/°C, and demonstrate the quasi-linear relation between resonant frequency and temperature. The sensor has the advantages of wide temperature range, good sensitivity, low cost and small size, which gives it superiority in high temperature applications.

12.
Plant Cell ; 35(9): 3544-3565, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37306489

ABSTRACT

Self-incompatibility (SI) is a widespread genetically determined system in flowering plants that prevents self-fertilization to promote gene flow and limit inbreeding. S-RNase-based SI is characterized by the arrest of pollen tube growth through the pistil. Arrested pollen tubes show disrupted polarized growth and swollen tips, but the underlying molecular mechanism is largely unknown. Here, we demonstrate that the swelling at the tips of incompatible pollen tubes in pear (Pyrus bretschneideri [Pbr]) is mediated by the SI-induced acetylation of the soluble inorganic pyrophosphatase (PPA) PbrPPA5. Acetylation at Lys-42 of PbrPPA5 by the acetyltransferase GCN5-related N-acetyltransferase 1 (GNAT1) drives accumulation of PbrPPA5 in the nucleus, where it binds to the transcription factor PbrbZIP77, forming a transcriptional repression complex that inhibits the expression of the pectin methylesterase (PME) gene PbrPME44. The function of PbrPPA5 as a transcriptional repressor does not require its PPA activity. Downregulating PbrPME44 resulted in increased levels of methyl-esterified pectins in growing pollen tubes, leading to swelling at their tips. These observations suggest a mechanism for PbrPPA5-driven swelling at the tips of pollen tubes during the SI response. The targets of PbrPPA5 include genes encoding cell wall-modifying enzymes, which are essential for building a continuous sustainable mechanical structure for pollen tube growth.


Subject(s)
Pollen Tube , Pyrus , Ribonucleases/metabolism , Inorganic Pyrophosphatase/genetics , Inorganic Pyrophosphatase/metabolism , Acetylation , Pyrus/metabolism
13.
Hortic Res ; 10(5): uhad049, 2023 May.
Article in English | MEDLINE | ID: mdl-37200839

ABSTRACT

Anthocyanins are valuable compounds in red-fleshed apples. The MdMYB10 transcription factor is an important regulator of the anthocyanin synthesis pathway. However, other transcription factors are key components of the complex network controlling anthocyanin synthesis and should be more thoroughly characterized. In this study, we used a yeast-based screening technology to identify MdNAC1 as a transcription factor that positively regulates anthocyanin synthesis. The overexpression of MdNAC1 in apple fruits and calli significantly promoted the accumulation of anthocyanins. In binding experiments, we demonstrated that MdNAC1 combines with the bZIP-type transcription factor MdbZIP23 to activate the transcription of MdMYB10 and MdUFGT. Our analyses also indicated that the expression of MdNAC1 is strongly induced by ABA because of the presence of an ABRE cis-acting element in its promoter. Additionally, the accumulation of anthocyanins in apple calli co-transformed with MdNAC1 and MdbZIP23 increased in the presence of ABA. Therefore, we revealed a novel anthocyanin synthesis mechanism involving the ABA-induced transcription factor MdNAC1 in red-fleshed apples.

14.
Hortic Res ; 10(4): uhad027, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37090094

ABSTRACT

Fragaria vesca, commonly known as wild or woodland strawberry, is the most widely distributed diploid Fragaria species and is native to Europe and Asia. Because of its small plant size, low heterozygosity, and relative ease of genetic transformation, F. vesca has been a model plant for fruit research since the publication of its Illumina-based genome in 2011. However, its genomic contribution to octoploid cultivated strawberry remains a long-standing question. Here, we de novo assembled and annotated a telomere-to-telomere, gap-free genome of F. vesca 'Hawaii 4', with all seven chromosomes assembled into single contigs, providing the highest completeness and assembly quality to date. The gap-free genome is 220 785 082 bp in length and encodes 36 173 protein-coding gene models, including 1153 newly annotated genes. All 14 telomeres and seven centromeres were annotated within the seven chromosomes. Among the three previously recognized wild diploid strawberry ancestors, F. vesca, F. iinumae, and F. viridis, phylogenomic analysis showed that F. vesca and F. viridis are the ancestors of the cultivated octoploid strawberry F. × ananassa, and F. vesca is its closest relative. Three subgenomes of F. × ananassa belong to the F. vesca group, and one is sister to F. viridis. We anticipate that this high-quality, telomere-to-telomere, gap-free F. vesca genome, combined with our phylogenomic inference of the origin of cultivated strawberry, will provide insight into the genomic evolution of Fragaria and facilitate strawberry genetics and molecular breeding.

15.
Int J Biol Macromol ; 241: 124562, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37088190

ABSTRACT

Alcohol solution is a cheap, simple, and effective precipitating solvent frequently used for separating debranched starch (DBS), yet little is known about the precipitation mechanism of DBS by different alcohols. This study precipitated DBS from pullulanase-hydrolyzed starch using ethanol, n-butanol, and isopentanol. The multiscale structures of DBS were characterized, including chain length, single/double helix, and crystalline. The chain conformation and precipitation mechanism of DBS in different alcohols was investigated using molecular dynamics (MD) simulation. DBS precipitated by n-butanol contained the largest proportion of short chain (DP6-24, 83.2 %), the highest V-type crystallinity (21.1 %), and the largest single-helix content (24.7 %). A single helix conformation of DBS chain was determined in alcohols, where alcohol molecules entered the helix cavity. Intra/inter-molecular hydrogen bonds stabilized the helix, with a large number of hydrogen bonds leading to strong molecular interaction and stable helical structure. The solvent accessible surface area of DBS chain decreased by 7.88-19.32 % in alcohols, and the radial distribution function revealed that the first solvent layer of DBS chain at 0.29 nm was closely related to hydrogen bonding. This study provides a basis for the choice of precipitation solvent for preparing DBS with different chain lengths and physicochemical properties.


Subject(s)
Alcohols , Starch , Starch/chemistry , Alcohols/chemistry , 1-Butanol , Solvents/chemistry , Molecular Dynamics Simulation
16.
Plant Sci ; 332: 111720, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37120034

ABSTRACT

As a class of biostimulants, karrikins (KARs) were first identified from plant-derived smoke to regulate plant growth, development, and stress tolerance. However, the roles of KARs in plant cold tolerance and their crosstalk with strigolactones (SLs) and abscisic acid (ABA) remain elusive. We studied the interaction among KAR, SLs, and ABA in cold acclimatization with KAI2-, MAX1-, SnRK2.5-silenced, or cosilenced plant materials. KAI2 is involved in smoke-water- (SW-) and KAR-mediated cold tolerance. MAX1 acts downstream of KAR in cold acclimation. ABA biosynthesis and sensitivity are regulated by KAR and SLs, which improve cold acclimation through the SnRK2.5 component. The physiological mechanisms of SW and KAR in improving growth, yield, and tolerance under a long-term sublow temperature environment were also studied. SW and KAR were shown to improve tomato growth and yield under sublow temperature conditions by regulating nutritional uptake, leaf temperature control, photosynthetic defense, ROS scavenging, and CBF transcriptional activation. Together, SW, which functions via the KAR-mediated SL and ABA signaling network, has potential application value for increasing cold tolerance in tomato production.


Subject(s)
Abscisic Acid , Solanum lycopersicum , Solanum lycopersicum/genetics , Smoke , Cold Temperature
17.
Plant Cell ; 35(6): 2095-2113, 2023 05 29.
Article in English | MEDLINE | ID: mdl-36883592

ABSTRACT

Flowering is critical for sexual reproduction and fruit production. Several pear (Pyrus sp.) varieties produce few flower buds, but the underlying mechanisms are unknown. The circadian clock regulator EARLY FLOWERING3 (ELF3) serves as a scaffold protein in the evening complex that controls flowering. Here, we report that the absence of a 58-bp sequence in the 2nd intron of PbELF3 is genetically associated with the production of fewer flower buds in pear. From rapid amplification of cDNA ends sequencing results, we identified a short, previously unknown transcript from the PbELF3 locus, which we termed PbELF3ß, whose transcript level was significantly lower in pear cultivars that lacked the 58-bp region. The heterologous expression of PbELF3ß in Arabidopsis (Arabidopsis thaliana) accelerated flowering, whereas the heterologous expression of the full-length transcript PbELF3α caused late flowering. Notably, ELF3ß was functionally conserved in other plants. Deletion of the 2nd intron reduced AtELF3ß expression and caused delayed flowering time in Arabidopsis. AtELF3ß physically interacted with AtELF3α, disrupting the formation of the evening complex and consequently releasing its repression of flower induction genes such as GIGANTEA (GI). AtELF3ß had no effect in the absence of AtELF3α, supporting the idea that AtELF3ß promotes flower induction by blocking AtELF3α function. Our findings show that alternative promoter usage at the ELF3 locus allows plants to fine-tune flower induction.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Circadian Clocks , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Circadian Clocks/physiology , Plants/metabolism , Flowers/metabolism
18.
J Mol Neurosci ; 73(4-5): 225-236, 2023 May.
Article in English | MEDLINE | ID: mdl-36930428

ABSTRACT

Posttraumatic stress disorder (PTSD) is a persistent and severe psychological and mental disorder resulting from experiences of serious trauma or stress and is suffered by many individuals. Previous studies have shown that pretreatment with sevoflurane is efficient in reducing the incidence of PTSD. However, we require a more comprehensive understanding of the specific mechanisms by which sevoflurane works. Enhancer of zeste homolog 2 (EZH2) has been reported to be regulated by sevoflurane, and to improve patient cognition. In this study, we aimed to explore the mechanisms of sevoflurane and the role of EZH2 in PTSD cases. We explored the effects of sevoflurane and EPZ-6438 (inhibitor of EZH2) on rat behavior, followed by an investigation of EZH2 mRNA and protein expression. The effects of sevoflurane and EZH2 on neuronal survival were assessed by western blotting and TUNEL staining, while western blotting was used to examine the expression of PSD95 and the AKT/mTOR proteins. Sevoflurane preconditioning restored EZH2 expression and significantly inhibited apoptosis by regulating phosphorylation of the AKT/mTOR pathway. Synaptic plasticity was also significantly improved. These results suggest that pretreatment with sevoflurane could play an important role in PTSD prevention by regulating EZH2 expression.


Subject(s)
Proto-Oncogene Proteins c-akt , Stress Disorders, Post-Traumatic , Rats , Animals , Sevoflurane/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Stress Disorders, Post-Traumatic/drug therapy , Enhancer of Zeste Homolog 2 Protein/genetics , Rats, Sprague-Dawley , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Hippocampus/metabolism , Apoptosis , Neuronal Plasticity
19.
Mol Plant ; 16(3): 599-615, 2023 03 06.
Article in English | MEDLINE | ID: mdl-36733253

ABSTRACT

Pear is an important fruit tree that is widely distributed around the world. The first pear genome map was reported from our laboratory approximately 10 years ago. To further study global protein expression patterns in pear, we generated pear proteome data based on 24 major tissues. The tissue-resolved profiles provided evidence of the expression of 17 953 proteins. We identified 4294 new coding events and improved the pear genome annotation via the proteogenomic strategy based on 18 090 peptide spectra with peptide spectrum matches >1. Among the eight randomly selected new short coding open reading frames that were expressed in the style, four promoted and one inhibited the growth of pear pollen tubes. Based on gene coexpression module analysis, we explored the key genes associated with important agronomic traits, such as stone cell formation in fruits. The network regulating the synthesis of lignin, a major component of stone cells, was reconstructed, and receptor-like kinases were implicated as core factors in this regulatory network. Moreover, we constructed the online database PearEXP (http://www.peardb.org.cn) to enable access to the pear proteogenomic resources. This study provides a paradigm for in-depth proteogenomic studies of woody plants.


Subject(s)
Proteogenomics , Pyrus , Pyrus/genetics , Pyrus/metabolism , Fruit/metabolism , Phenotype , Proteomics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
20.
ArXiv ; 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-36824427

ABSTRACT

Images document scientific discoveries and are prevalent in modern biomedical research. Microscopy imaging in particular is currently undergoing rapid technological advancements. However for scientists wishing to publish the obtained images and image analyses results, there are to date no unified guidelines. Consequently, microscopy images and image data in publications may be unclear or difficult to interpret. Here we present community-developed checklists for preparing light microscopy images and image analysis for publications. These checklists offer authors, readers, and publishers key recommendations for image formatting and annotation, color selection, data availability, and for reporting image analysis workflows. The goal of our guidelines is to increase the clarity and reproducibility of image figures and thereby heighten the quality and explanatory power of microscopy data is in publications.

SELECTION OF CITATIONS
SEARCH DETAIL
...