Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 18(40): e2204155, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36050884

ABSTRACT

The coordination environment of Ru centers determines their catalytic performance, however, much less attention is focused on cluster-induced charge transfer in a Ru single-atom system. Herein, by density functional theory (DFT) calculations, a competitive coordination-pairing between Ru clusters (RuRu bond) and single-atoms (RuO bond) is revealed leading to the charge redistribution between Ru and O atoms in ZnFe2 O4 units which share more free electrons to participate in the hydrogen desorption process, optimizing the proton adsorption and hydrogen desorption. Thus, a clicking confinement strategy for building a competitive coordination-pairing between Ru clusters and single-atoms anchored on ZnFe2 Ox nanosheets over carbon via RuO ligand (Ru1, n -ZnFe2 Ox -C) is proposed. Benefiting from the optimized coordination effect and the electronic synergy between Ru clusters and single-atoms, such a catalyst demonstrates the excellent activity and excellent stability in alkaline and seawater media, which has exceptional hydrogen evolution reaction activity with overpotentials as low as 10.1 and 15.9 mV to reach the current density of 10 mA cm-2 in alkaline and seawater media, respectively, higher than that of commercial Pt/C catalysts as a benchmark. Furthermore, it owns remarkably outstanding mass activity, approximately 2 and 8 times higher than that of Pt catalysts in alkaline and seawater media, respectively.

2.
Small ; 18(15): e2108097, 2022 04.
Article in English | MEDLINE | ID: mdl-35233940

ABSTRACT

The density functional theory calculation results reveal that the adjacent defect concentration and electronic spin state can effectively activate the CoIII sites in the atomically thin nanosheets, facilitating the thermodynamic transformation of *O to *OOH, thus offering ultrahigh charge transfer properties and efficiently stabilizing the phase. This undoubtedly evidences that, for metal sulfides, the atom-scale cation/anion vacancy pair and surface electronic spin state can play a great role in enhancing the oxygen evolution reaction. Inspired by the theoretical prediction, interconnected selenium (Se) wired ultrathin Co3 S4 (Sex -Co3 S4 ) nanosheets with Co/S (Se) dual-vacancies (Se1.0 -Co3 S4 -VS/Se -VCo ) pairs are constructed by a simple approach. As an efficient sulfur host material, in an ultralow-concentration KOH solution (0.1 m), Se1.0 -Co3 S4 -VS/Se -VCo presents outstanding durability up to 165 h and a low overpotential of 289.5 mV at 10 mA cm-2 , which outperform the commercial Co3 S4 nanosheets (NSs) and RuO2 . Moreover, the turnover frequency of Se1.0 -Co3 S4 -VS/Se -VCo is 0.00965 s-1 at an overpotential of 0.39 V, which is 5.7 times that of Co3 S4 NSs, and 5.8 times that of commercial RuO2 . The finding offers a rational design strategy to create the multi-defect structure in catalysts toward high-efficiency water electrolysis.


Subject(s)
Selenium , Water , Cations , Oxidation-Reduction , Oxygen
SELECTION OF CITATIONS
SEARCH DETAIL
...