Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-35954858

ABSTRACT

Silver nanoparticles (AgNPs) are released into the sewage pipes and ultimately wastewater treatment plants during manufacturing, use, and end-life disposal. AgNPs in wastewater treatment plants aggregate or dissolve, and may affect the microbial community and subsequent pollutant removal efficiency. This study aims to quantitatively investigate the fate of AgNPs in synthetic high ammonia nitrogen wastewater (SW) and sludge from an up-flow anaerobic sludge blanket (UASB) anammox reactor using a nanoparticle tracking analysis (NTA), dynamic light scattering (DLS), transmission electron microscope (TEM), and atomic absorption spectroscopy (AAS). Results showed that 18.1 mM NH4+, 2.11 mM Mg2+ in SW caused less negative zeta potential (ζ-potential, -18.4 vs. -37.4 mV), aggregation (388.8 vs. 21.5 nm), and settlement (80%) of citrate-coated AgNPs (cit-AgNPs) in 220 min. The presence of 18.5 mM Cl- in SW formed AgCl2-, AgCl(aq) and eventually promoted the dissolution (9.3%) of cit-AgNPs. Further exposure of SW-diluted AgNPs to sludge (42 mg L-1 humic acid) and induced a more negative ζ-potential (-22.2 vs. -18.4 mV) and smaller aggregates (313.4 vs. 388.8 nm) due to the steric and hindrance effect. The promoted Ag dissolution (34.4% vs. 9.3%) was also observed after the addition of sludge and the possible reason may be the production of Ag(NH3)2+ by the coexistence of HA from sludge and NH4+ from SW. These findings on the fate of AgNPs can be used to explain why AgNPs had limited effects on the sludge-retained bacteria which are responsible for the anammox process.


Subject(s)
Metal Nanoparticles , Sewage , Ammonia , Anaerobic Ammonia Oxidation , Bioreactors/microbiology , Citric Acid , Metal Nanoparticles/chemistry , Nitrogen , Sewage/microbiology , Silver/pharmacology , Solubility , Waste Disposal, Fluid/methods , Wastewater/chemistry
2.
Chemosphere ; 277: 130219, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33774246

ABSTRACT

In this study, an integrated migration and transformation (IMT) model based on microbial action, plant absorption, sediment release and substrate adsorption was firstly established to evaluate the temporal-spatial distribution of N and P in Lingang hybrid constructed wetland (CW), Tianjin. Compared to the conventional transformation model that only considers the microbial action, the IMT model could accurately predict the occurrence characteristics of N and P. In Lingang CW, NO3--N (0.56-3.63 mg/L) was the most important form of N, and the TP was at a relatively low concentration level (0.04-0.07 mg/L). The spatial distribution results showed that a certain amount of N and P could be removed by CW. Form the temporal perspective, the N and P concentrations were greatly affected by the dissolved oxygen (DO). The simulated values obtained by IMT model indicated that the distribution of N and P was more affected by the temporality compared with the spatiality, which was consistent with measured values. Besides, the PCA indicated that TN, NO3--N and DO were important factors, which affected the water quality of CW. The Nemerow pollution index method based on the simulated values indicated that Lingang CW was overall moderately polluted, and the subsurface area was the main functional unit of pollutants removal in CW. This work provides a new model for accurately predicting the occurrence characteristics of N and P pollutants in CW, which is of great significance for identifying its environmental risks and optimizing the construction of wetlands.


Subject(s)
Phosphorus , Wetlands , Nitrogen , Oxygen , Waste Disposal, Fluid
3.
Environ Sci Pollut Res Int ; 27(31): 38580-38590, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32623677

ABSTRACT

In this study, the occurrence, spatial distribution, sources, and ecological risks of perfluoroalkyl substances (PFASs) in the surface waters of the Lingang hybrid constructed wetland were systematically investigated. Twenty-three PFASs were analyzed from 7 representative sampling zones. The obtained results indicated that PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFOS, and HFPO-DA were frequently detected; and PFBA, PFOA, and PFOS were the dominant PFASs with the relative abundances in ranges of 26.91 to 52.26%, 11.79 to 28.79%, and 0 to 31.98%, respectively. The total concentrations of 8 PFASs (Σ8PFASs) ranged from 25.9 to 56.6 ng/L, and the highest concentration was observed in subsurface flow wetland. Moreover, HFPO-DA with high toxicity was detected in wetlands for the first time. Based on the principal component analysis-multiple linear regression (PCA-MLR) analysis, three sources and their contributions were fluoropolymer processing aids (67.6%), fluororesin coatings and metal plating (17.9%), and food packaging materials and atmospheric precipitation (14.5%), respectively. According to the risk quotients (RQs), the ecological risk of 8 PFASs was low to the aquatic organisms.


Subject(s)
Alkanesulfonic Acids/analysis , Fluorocarbons/analysis , Water Pollutants, Chemical/analysis , China , Environmental Monitoring , Wetlands
SELECTION OF CITATIONS
SEARCH DETAIL
...