Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
NMR Biomed ; 33(5): e4269, 2020 05.
Article in English | MEDLINE | ID: mdl-32133713

ABSTRACT

Hyperpolarized (HP) 13C MRI provides the means to monitor lactate metabolism noninvasively in tumours. Since 13C -lactate signal levels obtained from HP 13C imaging depend on multiple factors, such as the rate of 13C substrate delivery via the vasculature, the expression level of monocarboxylate transporters (MCTs) and lactate dehydrogenase (LDH), and the local lactate pool size, the interpretation of HP 13C metabolic images remains challenging. In this study, ex vivo tissue extract measurements (i.e., NMR isotopomer analysis, western blot analysis) derived from an MDA-MB-231 xenograft model in nude rats were used to test for correlations between the in vivo 13C data and the ex vivo measures. The lactate-to-pyruvate ratio from HP 13C MRI was strongly correlated with [1- 13C ]lactate concentration measured from the extracts using NMR (R = 0.69, p < 0.05), as well as negatively correlated with tumour wet weight (R = -  0.60, p < 0.05). In this tumour model, both MCT1 and MCT4 expressions were positively correlated with wet weight ( ρ = 0.78 and 0.93, respectively, p < 0.01). Lactate pool size and the lactate-to-pyruvate ratio were not significantly correlated.


Subject(s)
Carbon Isotopes/chemistry , Magnetic Resonance Imaging , Tissue Extracts/analysis , Animals , Cell Line, Tumor , Male , Rats , Xenograft Model Antitumor Assays
2.
NMR Biomed ; 31(1)2018 Jan.
Article in English | MEDLINE | ID: mdl-29106770

ABSTRACT

Previous studies have demonstrated that using hyperpolarized [2-13 C]pyruvate as a contrast agent can reveal 13 C signals from metabolites associated with the tricarboxylic acid (TCA) cycle. However, the metabolites detectable from TCA cycle-mediated oxidation of [2-13 C]pyruvate are the result of several metabolic steps. In the instance of the [5-13 C]glutamate signal, the amplitude can be modulated by changes to the rates of pyruvate dehydrogenase (PDH) flux, TCA cycle flux and metabolite pool size. Also key is the malate-aspartate shuttle, which facilitates the transport of cytosolic reducing equivalents into the mitochondria for oxidation via the malate-α-ketoglutarate transporter, a process coupled to the exchange of cytosolic malate for mitochondrial α-ketoglutarate. In this study, we investigated the mechanism driving the observed changes to hyperpolarized [2-13 C]pyruvate metabolism. Using hyperpolarized [1,2-13 C]pyruvate with magnetic resonance spectroscopy (MRS) in the porcine heart with different workloads, it was possible to probe 13 C-glutamate labeling relative to rates of cytosolic metabolism, PDH flux and TCA cycle turnover in a single experiment non-invasively. Via the [1-13 C]pyruvate label, we observed more than a five-fold increase in the cytosolic conversion of pyruvate to [1-13 C]lactate and [1-13 C]alanine with higher workload. 13 C-Bicarbonate production by PDH was increased by a factor of 2.2. Cardiac cine imaging measured a two-fold increase in cardiac output, which is known to couple to TCA cycle turnover. Via the [2-13 C]pyruvate label, we observed that 13 C-acetylcarnitine production increased 2.5-fold in proportion to the 13 C-bicarbonate signal, whereas the 13 C-glutamate metabolic flux remained constant on adrenergic activation. Thus, the 13 C-glutamate signal relative to the amount of 13 C-labeled acetyl-coenzyme A (acetyl-CoA) entering the TCA cycle was decreased by 40%. The data strongly suggest that NADH (reduced form of nicotinamide adenine dinucleotide) shuttling from the cytosol to the mitochondria via the malate-aspartate shuttle is limited on adrenergic activation. Changes in [5-13 C]glutamate production from [2-13 C]pyruvate may play an important future role in non-invasive myocardial assessment in patients with cardiovascular diseases, but careful interpretation of the results is required.


Subject(s)
Carbon Isotopes/metabolism , Malates/metabolism , Myocardium/metabolism , Pyruvic Acid/metabolism , Animals , Dobutamine/pharmacology , Heart Function Tests , Magnetic Resonance Imaging, Cine , Sus scrofa
3.
NMR Biomed ; 29(8): 1038-47, 2016 08.
Article in English | MEDLINE | ID: mdl-27295304

ABSTRACT

In this study, a mixture of pyruvic acid and the perfusion agent HP001 was co-polarized for simultaneous assessment of perfusion and metabolism in vivo. The pre-polarized mixture was administered to rats with subcutaneous MDA-MB-231 breast cancer xenografts and imaged using an interleaved sequence with designed spectral-spatial pulses and flyback echo-planar readouts. Voxel-by-voxel signal correlations from 10 animals (15 data sets) were analyzed for tumour, kidney, and muscle regions of interest. The relationship between perfusion and hyperpolarized signal was explored on a voxel-by-voxel basis in various metabolically active tissues, including tumour, healthy kidneys, and skeletal muscle. Positive pairwise correlations between lactate, pyruvate, and HP001 observed in all 10 tumours suggested that substrate delivery was the dominant factor limiting the conversion of pyruvate to lactate in the tumour model used in this study. On the other hand, in cases where conversion is the limiting factor, such as in healthy kidneys, both pyruvate and lactate can act as excellent perfusion markers. In intermediate cases between the two limits, such as in skeletal muscle, some perfusion information may be inferred from the (pyruvate + lactate) signal distribution. Co-administration of pyruvate with a dynamic nuclear polarization (DNP) perfusion agent is an effective approach for distinguishing between slow metabolism and poor perfusion and a practical strategy for lactate signal normalization to account for substrate delivery, especially in cases of rapid pyruvate-to-lactate conversion and in poorly perfused regions with inadequate pyruvate signal-to-noise ratio for reliable determination of the lactate-to-pyruvate ratio. Copyright © 2016 John Wiley & Sons, Ltd.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Carbon-13 Magnetic Resonance Spectroscopy/methods , Lactic Acid/metabolism , Neovascularization, Pathologic/pathology , Pyruvic Acid/metabolism , Signal Processing, Computer-Assisted , Animals , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Contrast Media/pharmacokinetics , Humans , Magnetic Resonance Imaging/methods , Male , Molecular Imaging/methods , Neovascularization, Pathologic/metabolism , Rats , Rats, Nude
4.
J Am Chem Soc ; 138(6): 1893-903, 2016 Feb 17.
Article in English | MEDLINE | ID: mdl-26804745

ABSTRACT

Cell-derived microvesicles (MVs) are natural carriers that can transport biological molecules between cells, which are expected to be promising delivery vehicles for therapeutic purposes. Strategies to label MVs are very important for investigation and application of MVs. Herein, ultrasmall Mn-magnetofunctionalized Ag2Se quantum dots (Ag2Se@Mn QDs) integrated with excellent near-infrared (NIR) fluorescence and magnetic resonance (MR) imaging capabilities have been developed for instant efficient labeling of MVs for their in vivo high-resolution dual-mode tracking. The Ag2Se@Mn QDs were fabricated by controlling the reaction of Mn(2+) with the Ag2Se nanocrystals having been pretreated in 80 °C NaOH solution, with an ultrasmall size of ca. 1.8 nm, water dispersibility, high NIR fluorescence quantum yield of 13.2%, and high longitudinal relaxivity of 12.87 mM(-1) s(-1) (almost four times that of the commercial contrast agent Gd-DTPA). The ultrasmall size of the Ag2Se@Mn QDs enables them to be directly and efficiently loaded into MVs by electroporation, instantly and reliably conferring both NIR fluorescence and MR traceability on MVs. Our method for labeling MVs of different origins is universal and free of unfavorable influence on intrinsic behaviors of MVs. The complementary imaging capabilities of the Ag2Se@Mn QDs have made the long-term noninvasive whole-body high-resolution dual-mode tracking of MVs in vivo realized, by which the dynamic biodistribution of MVs has been revealed in a real-time and in situ quantitative manner. This work not only opens a new window for labeling with QDs, but also facilitates greatly the investigation and application of MVs.


Subject(s)
Magnetics , Quantum Dots , Silver/chemistry , Animals , Biocompatible Materials , Cell Line, Tumor , Humans , Mice , Spectrum Analysis/methods
5.
NMR Biomed ; 26(10): 1233-41, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23553912

ABSTRACT

A calibration-based technique for real-time measurement of pyruvate polarization by partial integral analysis of the doublet from the neighbouring J-coupled carbon is presented. In vitro calibration data relating the C2 and C1 asymmetries to the instantaneous C1 and C2 polarizations, respectively, were acquired in blood. The feasibility of using the in vitro calibration data to determine the instantaneous in vivo C1 and C2 polarizations was demonstrated in the analysis of rat kidney and pig heart spectral data. An approach for incorporating this technique into in vivo protocols is proposed.


Subject(s)
Computer Systems , Magnetic Resonance Spectroscopy/methods , Pyruvic Acid/chemistry , Pyruvic Acid/metabolism , Animals , Calibration , Carbon Isotopes , Kidney/metabolism , Male , Myocardium/metabolism , Pyruvic Acid/blood , Rabbits , Rats , Rats, Nude , Sus scrofa , Thermodynamics , Time Factors
6.
PLoS One ; 8(2): e56551, 2013.
Article in English | MEDLINE | ID: mdl-23424666

ABSTRACT

Following radiation therapy (RT), tumor morphology may remain unchanged for days and sometimes weeks, rendering anatomical imaging methods inadequate for early detection of therapeutic response. Changes in the hyperpolarized [1-¹³C]lactate signals observed in vivo following injection of pre-polarized [1-¹³C]pyruvate has recently been shown to be a marker for tumor progression or early treatment response. In this study, the feasibility of using ¹³C metabolic imaging with [1-¹³C]pyruvate to detect early radiation treatment response in a breast cancer xenograft model was demonstrated in vivo and in vitro. Significant decreases in hyperpolarized [1-¹³C]lactate relative to [1-¹³C]pyruvate were observed in MDA-MB-231 tumors 96 hrs following a single dose of ionizing radiation. Histopathologic data from the treated tumors showed higher cellular apoptosis and senescence; and changes in the expression of membrane monocarboxylate transporters and lactate dehydrogenase B were also observed. Hyperpolarized ¹³C metabolic imaging may be a promising new tool to develop novel and adaptive therapeutic regimens for patients undergoing RT.


Subject(s)
Breast Neoplasms/pathology , Breast Neoplasms/radiotherapy , Cell Transformation, Neoplastic , Pyruvic Acid , Animals , Apoptosis/radiation effects , Breast Neoplasms/diagnosis , Breast Neoplasms/metabolism , Carbon Radioisotopes , Cell Line, Tumor , Cellular Senescence/radiation effects , Humans , Male , Rats , Rats, Nude , Time Factors , Treatment Outcome
7.
Anal Chem ; 84(21): 8932-5, 2012 Nov 06.
Article in English | MEDLINE | ID: mdl-23046454

ABSTRACT

The near-infrared (NIR) electrogenerated chemiluminescence (ECL) of water-dispersed Ag(2)Se quantum dots (QDs) with ultrasmall size was presented for the first time. The Ag(2)Se QDs have shown a strong and efficient cathodic ECL signal with K(2)S(2)O(8) as coreactant on the glassy carbon electrode (GCE) in aqueous solution. The ECL spectrum exhibited a peak at 695 nm, consistent with the peak in photoluminescence (PL) spectrum of the Ag(2)Se QDs solution, indicating that the Ag(2)Se QDs had no deep surface traps. Dopamine was chosen as a model analyte to study the potential of Ag(2)Se QDs in the ECL analytical application. The ECL signal of Ag(2)Se QDs can also be used for the detection of the dopamine concentration in the practical drug (dopamine hydrochloride injection) containing several adjuvants such as edetate disodium, sodium bisulfite, sodium chloride and so on. The Ag(2)Se QDs could be a promising candidate emitter of ECL biosensors in the future due to their fantastic features, such as ultrasmall size, low toxicity, good water solubility, and near infrared (NIR) fluorescent emission.


Subject(s)
Dopamine/analysis , Infrared Rays , Luminescent Measurements/methods , Particle Size , Quantum Dots/chemistry , Selenium Compounds/chemistry , Silver Compounds/chemistry , Dopamine/chemistry , Electrochemistry
8.
NMR Biomed ; 25(2): 305-11, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21774012

ABSTRACT

(13)C MR spectroscopy studies performed on hearts ex vivo and in vivo following perfusion of prepolarized [1-(13)C]pyruvate have shown that changes in pyruvate dehydrogenase (PDH) flux may be monitored non-invasively. However, to allow investigation of Krebs cycle metabolism, the (13)C label must be placed on the C2 position of pyruvate. Thus, the utilization of either C1 or C2 labeled prepolarized pyruvate as a tracer can only afford a partial view of cardiac pyruvate metabolism in health and disease. If the prepolarized pyruvate molecules were labeled at both C1 and C2 positions, then it would be possible to observe the downstream metabolites that were the results of both PDH flux ((13)CO(2) and H(13)CO(3)(-)) and Krebs cycle flux ([5-(13)C]glutamate) with a single dose of the agent. Cardiac pH could also be monitored in the same experiment, but adequate SNR of the (13)CO(2) resonance may be difficult to obtain in vivo. Using an interleaved selective RF pulse acquisition scheme to improve (13)CO(2) detection, the feasibility of using dual-labeled hyperpolarized [1,2-(13)C(2)]pyruvate as a substrate for dynamic cardiac metabolic MRS studies to allow simultaneous investigation of PDH flux, Krebs cycle flux and pH, was demonstrated in vivo.


Subject(s)
Citric Acid Cycle , Myocardium/enzymology , Pyruvate Dehydrogenase Complex/metabolism , Pyruvic Acid/metabolism , Animals , Bicarbonates/metabolism , Carbon Dioxide/metabolism , Carbon Isotopes , Hydrogen-Ion Concentration , Phantoms, Imaging , Sus scrofa
9.
J Am Chem Soc ; 134(1): 79-82, 2012 Jan 11.
Article in English | MEDLINE | ID: mdl-22148738

ABSTRACT

A strategy is presented that involes coupling Na(2)SeO(3) reduction with the binding of silver ions and alanine in a quasi-biosystem to obtain ultrasmall, near-infrared Ag(2)Se quantum dots (QDs) with tunable fluorescence at 90 °C in aqueous solution. This strategy avoids high temperatures, high pressures, and organic solvents so that water-dispersible sub-3 nm Ag(2)Se QDs can be directly obtained. The photoluminescence of the Ag(2)Se QDs was size-dependent over a wavelength range from 700 to 820 nm, corresponding to sizes from 1.5 ± 0.4 to 2.4 ± 0.5 nm, with good monodispersity. The Ag(2)Se QDs are less cytotoxic than other nanomaterials used for similar applications. Furthermore, the NIR fluorescence of the Ag(2)Se QDs could penetrate through the abdominal cavity of a living nude mouse and could be detected on its back side, demonstrating the potential applications of these less toxic NIR Ag(2)Se QDs in bioimaging.


Subject(s)
Infrared Rays , Molecular Imaging/methods , Particle Size , Quantum Dots , Selenium Compounds/chemistry , Animals , Cell Line , Cell Survival/drug effects , Mice , Models, Molecular , Molecular Conformation , Selenium Compounds/toxicity , Spectrometry, Fluorescence
10.
NMR Biomed ; 24(5): 514-20, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21674653

ABSTRACT

Reporter-based cell detection and localization in vivo may become an important imaging tool with the emergence of cellular therapy. With the strong signal enhancement provided by dynamic nuclear polarization, an NMR-based reporter probe system utilizing specific enzyme expression and activity can potentially provide stable, high-resolution visualization of the cells of interest noninvasively. In this work, a proof-of-concept (13) C MR reporter system, using the aminoacylase-1 reporter gene (Acy-1) and prepolarized [1-(13) C]N-acetyl-L-methionine as the paired substrate, was developed. Using a 3-T MR scanner, the feasibility of detecting and imaging de-acetylation of the prepolarized (13) C-labeled substrate by the aminoacylase-1 enzyme was demonstrated with purified protein in solution by dynamic (13) C MRS and two-dimensional MRSI experiments. The potential to perform targeted MRI of cells using this system was also demonstrated by (13) C MR measurement of aminoacylase-1 activity in HEK 293 cells transfected with the Acy-1 gene. The de-acetylation of the substrate was not observed in control cells.


Subject(s)
Genes, Reporter/genetics , Magnetic Resonance Spectroscopy/methods , Amidohydrolases/metabolism , Blotting, Western , Carbon Isotopes , HEK293 Cells , Humans , Substrate Specificity , Time Factors , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...