Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Cell Death Dis ; 12(8): 777, 2021 08 06.
Article in English | MEDLINE | ID: mdl-34362881

ABSTRACT

Poor response of tumors to radiotherapy is a major clinical obstacle. Because of the dynamic characteristics of the epigenome, identification of possible epigenetic modifiers may be beneficial to confer radio-sensitivity. This research was set to examine the modulation of ectodermal-neural cortex 1 (ENC1) in radio-resistance in breast carcinoma (BC). In silico identification and immunohistochemical staining revealed that overexpression of ENC1 promoted BC metastasis to the bone and brain. Moreover, its overexpression promoted the translocation of YAP1/TAZ into the nucleus and enhanced expression of GLI1, CTGF, and FGF1 through the Hippo pathway. ENC1 expression was controlled by a ~10-kb long SE. ENC1-SEdistal deletion reduced ENC1 expression and inhibited the malignant behavior of BC cells and their resistance to radiotherapy. The binding sites on the ENC1-SE region enriched the shared sequence between TCF4 and ENC1 promoter. Knocking-down TCF4 inhibited luciferase activity and H3K27ac-enriched binding of the ENC1-SE region. Additionally, SE-driven ENC1 overexpression mediated by TCF4 may have clinical implications in radio-resistance in BC patients. Our findings indicated that ENC1 overexpression is mediated by SE and the downstream TCF4 to potentiate the Hippo/YAP1/TAZ pathway. Targeting this axis might be a therapeutic strategy for overcoming BC radio-resistance.


Subject(s)
Breast Neoplasms/genetics , Enhancer Elements, Genetic/genetics , Microfilament Proteins/genetics , Neuropeptides/genetics , Nuclear Proteins/genetics , Oncogenes , Radiation Tolerance , Acetylation , Animals , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic , Histones/metabolism , Humans , Intracellular Signaling Peptides and Proteins , Lysine/metabolism , Mice, Inbred BALB C , Mice, Nude , Microfilament Proteins/metabolism , Neoplasm Metastasis , Neuropeptides/metabolism , Nuclear Proteins/metabolism , Prognosis , Protein Serine-Threonine Kinases , RNA, Small Interfering/metabolism , Radiation Tolerance/genetics , Transcription Factor 4/metabolism , Transcriptional Activation/genetics , Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism , YAP-Signaling Proteins/metabolism
2.
ACS Appl Mater Interfaces ; 7(13): 7294-302, 2015 Apr 08.
Article in English | MEDLINE | ID: mdl-25821907

ABSTRACT

There has been impressive progress in the fabrication and characterization of p-type organic electrolyte-gated transistors (EGTs). Unfortunately, despite the importance of n-type organic transistors for complementary circuits, fewer investigations have focused on developing electrolytes as gate dielectrics for n-type organic semiconductors. Here, we present a novel single ion conductor, a polymerized ionic liquid (PIL) triblock copolymer (PS-PIL-PS) composed of styrene (PS) and 1-[(2-acryloyloxy)ethyl]-3-butylimidazolium bis(trifluoromethylsulfonyl)imide (PIL), that conducts only the TFSI anion. This triblock copolymer acts as a gate dielectric to allow low-voltage n-type organic EGT operation. Impedance characterization of PS-PIL-PS reveals that there are three polarization regions: (1) dipolar relaxation, (2) ion migration, and (3) electric double layer (EDL) formation. These polarization regions are controlled by film thickness, and rapid EDL formation can be obtained in thinner polyelectrolyte films. In particular, a 500 nm-thick polyelectrolyte film exhibits a large capacitance of ∼1 µF/cm(2) at 10 kHz. Employing this single ion conducting PIL triblock copolymer as the gate insulator, we achieved low voltage operation (<1 V supply) of poly{[N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)} (P(NDI2OD-T2)) n-type organic EGTs (electron mobility of ∼0.008 cm(2)/(V·s) and ON/OFF current ratio of ∼2 × 10(3)) by preventing electrochemical doping. Furthermore, the recognition that the performance of n-type organic EGTs is diminished by 3D electrochemical doping suggests that it may be necessary to have a unipolar electrolyte to gate n-type organic semiconductors. Finally, we highlight that the use of PIL block copolymer electrolytes as gate insulators opens unique opportunities to explore the role of ion penetration in n-type organic EGTs by tuning the extent of electrochemical doping.

3.
ACS Appl Mater Interfaces ; 6(21): 19275-81, 2014 Nov 12.
Article in English | MEDLINE | ID: mdl-25320873

ABSTRACT

A facile fabrication route to pattern high-capacitance electrolyte thin films in electrolyte-gated transistors (EGTs) was demonstrated using a photoinitiated cross-linkable ABA-triblock copolymer ion gel. The azide groups of poly(styrene-r-vinylbenzylazide) (PS-N3) end-blocks can be chemically cross-linked via UV irradiation (λ = 254 nm) in the self-assembly of poly[(styrene-r-vinylbenzylazide)-b-ethylene oxide-b-(styrene-r-vinylbenzylazide)] (SOS-N3) triblock copolymer in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMI][TFSI]). Impedance spectroscopy and small-angle X-ray scattering revealed that ion transport and microstructure of the ion gel are not affected by UV cross-linking. Using a photoinduced cross-linking strategy, photopatterning of ion gels through a patterned mask was achieved. Employing a photopatterned ion gel as the high-capacitance gate insulator in thin film transistors (TFTs), arrays of TFTs exhibited uniform and high device performance. Specifically, both p-type (poly(3-hexylthiophene)) (P3HT) and n-type (ZnO) transistors displayed high carrier mobility (hole mobility of ∼ 1.4 cm(2)/ (V s) and electron mobility of ∼ 0.7 cm(2)/ (V s) and ON/OFF current ratio (∼ 10(5)) at supply voltages below 2 V. This study suggests that photopatterning is a promising candidate to conveniently incorporate high-capacitance ion gels into TFTs in the fabrication of printed electronics.

4.
ACS Appl Mater Interfaces ; 5(19): 9522-7, 2013 Oct 09.
Article in English | MEDLINE | ID: mdl-24028461

ABSTRACT

Thermally assisted transfer printing was employed to pattern thin films of high capacitance ion gels on polyimide, poly(ethylene terephthalate), and SiO2 substrates. The ion gels consisted of 20 wt % block copolymer poly(styrene-b-ethylene oxide-b-styrene and 80 wt % ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethyl sulfonyl)amide. Patterning resolution was on the order of 10 µm. Importantly, ion gels containing the block polymer with short PS end blocks (3.4 kg/mol) could be transfer-printed because of thermoreversible gelation that enabled intimate gel-substrate contact at 100 °C, while gels with long PS blocks (11 kg/mol) were not printable at the same temperature due to poor wetting contact between the gel and substrates. By using printed ion gels as high-capacitance gate insulators, electrolyte-gated thin-film transistors were fabricated that operated at low voltages (<1 V) with high on/off current ratios (∼10(5)). Statistical analysis of carrier mobility, turn-on voltage, and on/off ratio for an array of printed transistors demonstrated the excellent reproducibility of the printing technique. The results show that transfer printing is an attractive route to pattern high-capacitance ion gels for flexible thin-film devices.


Subject(s)
Electronics , Gels/chemistry , Ions/chemistry , Silicon Dioxide/chemistry , Polyethylene Glycols/chemistry , Polyethylene Terephthalates , Polymers/chemistry , Semiconductors , Temperature , Transistors, Electronic
5.
J Am Chem Soc ; 135(26): 9652-5, 2013 Jul 03.
Article in English | MEDLINE | ID: mdl-23777188

ABSTRACT

Self-assembly of ABA triblocks in ionic liquids provides a versatile route to highly functional physical ion gels, with promise in applications ranging from plastic electronics to gas separation. However, the reversibility of network formation, so favorable for processing, restricts the ultimate mechanical strength of the material. Here, we describe a novel ABA system that can be chemically cross-linked in a second annealing step, thereby providing greatly enhanced toughness. The ABA triblock is a poly(styrene-b-ethylene oxide-b-styrene) polymer in which about 25 mol % of the styrene units have a pendant azide functionality. After self-assembly of 10 wt % triblock in the ionic liquid [EMI][TFSA], the styrene domains are cross-linked by annealing at elevated temperature for ca. 20 min. The high ionic conductivity (ca. 10 mS/cm) of the physical ion gels is preserved in the final product, while the tensile strength is increased by a factor of 5.


Subject(s)
Cross-Linking Reagents/chemical synthesis , Gels/chemistry , Polyethylene Glycols/chemical synthesis , Polystyrenes/chemical synthesis , Cross-Linking Reagents/chemistry , Electric Conductivity , Ions/chemistry , Molecular Structure , Polyethylene Glycols/chemistry , Polystyrenes/chemistry
6.
Adv Mater ; 24(32): 4457-62, 2012 Aug 22.
Article in English | MEDLINE | ID: mdl-22760996

ABSTRACT

A free-standing polymer electrolyte called an ion gel is employed in both organic and inorganic thin-film transistors as a high capacitance gate dielectric. To prepare a transistor, the free-standing ion gel is simply laid over a semiconductor channel and a side-gate electrode, which is possible because of the gel's high mechanical strength.


Subject(s)
Electric Capacitance , Gels/chemistry , Electrodes , Electrolytes/chemistry , Ionic Liquids/chemistry , Ions/chemistry , Polymers/chemistry , Semiconductors
SELECTION OF CITATIONS
SEARCH DETAIL