Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Chem Biol ; 20(7): 857-866, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38355723

ABSTRACT

Major depressive disorder, a prevalent and severe psychiatric condition, necessitates development of new and fast-acting antidepressants. Genetic suppression of astrocytic inwardly rectifying potassium channel 4.1 (Kir4.1) in the lateral habenula ameliorates depression-like phenotypes in mice. However, Kir4.1 remains an elusive drug target for depression. Here, we discovered a series of Kir4.1 inhibitors through high-throughput screening. Lys05, the most potent one thus far, effectively suppressed native Kir4.1 channels while displaying high selectivity against established targets for rapid-onset antidepressants. Cryogenic-electron microscopy structures combined with electrophysiological characterizations revealed Lys05 directly binds in the central cavity of Kir4.1. Notably, a single dose of Lys05 reversed the Kir4.1-driven depression-like phenotype and exerted rapid-onset (as early as 1 hour) antidepressant actions in multiple canonical depression rodent models with efficacy comparable to that of (S)-ketamine. Overall, we provided a proof of concept that Kir4.1 is a promising target for rapid-onset antidepressant effects.


Subject(s)
Antidepressive Agents , Potassium Channels, Inwardly Rectifying , Antidepressive Agents/pharmacology , Antidepressive Agents/chemistry , Potassium Channels, Inwardly Rectifying/antagonists & inhibitors , Potassium Channels, Inwardly Rectifying/metabolism , Animals , Mice , Male , Rats , Humans , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/metabolism , Depression/drug therapy , Depression/metabolism , Disease Models, Animal , Mice, Inbred C57BL , Potassium Channel Blockers/pharmacology , Potassium Channel Blockers/chemistry
2.
J Neurophysiol ; 130(1): 69-85, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37258511

ABSTRACT

Activity-dependent modulation of electrical transmission typically involves Ca2+ influx acting directly on gap junctions or initiating Ca2+-dependent pathways that in turn modulate coupling. We now describe short-term use-dependent facilitation of electrical transmission between bag cell neurons from the hermaphroditic snail, Aplysia californica, that is instead mediated by changes in postsynaptic responsiveness. Bag cell neurons secrete reproductive hormone during a synchronous afterdischarge of action potentials coordinated by electrical coupling. Here, recordings from pairs of coupled bag cell neurons in culture showed that nonjunctional currents influence electrical transmission in a dynamic manner. Under a dual whole cell voltage-clamp, the junctional current was linear and largely voltage-independent, while in current-clamp, the coupling coefficient was similar regardless of the extent of presynaptic hyperpolarization. Moreover, a train stimulus of action potential-like waveforms, in a voltage-clamped presynaptic neuron, elicited electrotonic potentials, in a current-clamped postsynaptic neuron, that facilitated over time when delivered at a frequency approximating the afterdischarge. Junctional current remained constant over the train stimulus, as did postsynaptic voltage-gated Ca2+ current. However, postsynaptic voltage-gated K+ current underwent cumulative inactivation, suggesting that K+ current run-down facilitates the electrotonic potential by boosting the response to successive junctional currents. Accordingly, preventing run-down by blocking postsynaptic K+ channels occluded facilitation. Finally, stimulation of bursts in coupled pairs resulted in synchronous firing, where active neurons could recruit silent partners through short-term use-dependent facilitation. Thus, potentiation of electrical transmission may promote synchrony in bag cell neurons and, by extension, reproductive function.NEW & NOTEWORTHY The understanding of how activity can facilitate electrical transmission is incomplete. We found that electrotonic potentials between electrically coupled neuroendocrine bag cell neurons facilitated in a use-dependent fashion. Rather than changes to the junctional current, facilitation was associated with cumulative inactivation of postsynaptic K+ current, presumably augmenting responsiveness. When made to burst, neurons synchronized their spiking, in part by use-dependent facilitation bringing quiescent cells to the threshold. Facilitation may foster en masse firing and neurosecretion.


Subject(s)
Neurons , Synaptic Potentials , Animals , Neurons/physiology , Action Potentials , Aplysia/physiology , Calcium/metabolism
3.
J Neurosci ; 38(11): 2796-2808, 2018 03 14.
Article in English | MEDLINE | ID: mdl-29440551

ABSTRACT

By synchronizing neuronal activity, electrical transmission influences the coordination, pattern, and/or frequency of firing. In the hemaphroditic marine-snail, Aplysia calfornica, the neuroendocrine bag cell neurons use electrical synapses to synchronize a 30 min afterdischarge of action potentials for the release of reproductive hormone. During the afterdischarge, protein kinase C (PKC) is activated, although its impact on bag cell neuron electrical transmission is unknown. This was investigated here by monitoring electrical synapses between paired cultured bag cell neurons using dual whole-cell recording. Voltage clamp revealed a largely voltage-independent junctional current, which was enhanced by treating with a PKC activator, PMA, before recording. We also examined the transfer of presynaptic action potential-like waveforms (generated in voltage clamp) to the postsynaptic cell (measured in current clamp). For control pairs, the presynaptic spike-like waveforms mainly evoked electrotonic potentials; however, when PKC was triggered, these stimuli consistently produced postsynaptic action potentials. To assess whether this involved changes to postsynaptic responsiveness, single bag cell neurons were injected with junctional-like current mimicking that evoked by a presynaptic action potential. Unlike control neurons, which were less likely to spike, cells in PMA always fired action potentials to the junctional-like current. Furthermore, PKC activation increased a postsynaptic voltage-gated Ca2+ current, which was recruited even by modest depolarization associated with an electrotonic potential. Whereas PKC inhibits gap junctions in most systems, bag cell neurons are rather unique, as the kinase potentiates the electrical synapse; in turn, this synergizes with augmented postsynaptic Ca2+ current to promote synchronous firing.SIGNIFICANCE STATEMENT Electrical coupling is a fundamental form of communication. For the bag cell neurons of Aplysia, electrical synapses coordinate a prolonged burst of action potentials known as the afterdischarge. We looked at how protein kinase C, which is upregulated with the afterdischarge, influences information transfer across the synapse. The kinase activation increased junctional current, a remarkable finding given that this enzyme is largely considered inhibitory for gap junctions. There was also an augmentation in the ability of a presynaptic neuron to provoke postsynaptic action potentials. This increased excitability was, in part, due to enhanced postsynaptic voltage-dependent Ca2+ current. Thus, protein kinase C improves the fidelity of electrotonic transmission and promotes synchronous firing by modulating both junctional and membrane conductances.


Subject(s)
Aplysia/physiology , Calcium Channels/physiology , Protein Kinase C/physiology , Synapses/drug effects , Synaptic Transmission/physiology , Action Potentials/physiology , Animals , Electrical Synapses/drug effects , Enzyme Activation , Excitatory Postsynaptic Potentials/physiology , Neuroendocrine Cells/physiology , Neurons/drug effects , Patch-Clamp Techniques , Synaptic Potentials
4.
Neuroscience ; 372: 273-288, 2018 02 21.
Article in English | MEDLINE | ID: mdl-29306054

ABSTRACT

Changes to neuronal activity often involve a rapid and precise transition from low to high excitability. In the marine snail, Aplysia, the bag cell neurons control reproduction by undergoing an afterdischarge, which begins with synaptic input releasing acetylcholine to open an ionotropic cholinergic receptor. Gating of this receptor causes depolarization and a shift from silence to continuous action potential firing, leading to the neuroendocrine secretion of egg-laying hormone and ovulation. At the onset of the afterdischarge, there is a rise in intracellular Ca2+, followed by both protein kinase C (PKC) activation and tyrosine dephosphorylation. To determine whether these signals influence the acetylcholine ionotropic receptor, we examined the bag cell neuron cholinergic response both in culture and isolated clusters using whole-cell and/or sharp-electrode electrophysiology. The acetylcholine-induced current was not altered by increasing intracellular Ca2+ via voltage-gated Ca2+ channels, clamping intracellular Ca2+ with exogenous Ca2+ buffers, or activating PKC with phorbol esters. However, lowering phosphotyrosine levels by inhibiting tyrosine kinases both reduced the cholinergic current and prevented acetylcholine from triggering action potentials or afterdischarge-like bursts. In other systems, acetylcholine receptors are often modulated by multiple signals, but bag cell neurons appear to be more restrictive in this regard. Prior work finds that, as the afterdischarge proceeds, tyrosine dephosphorylation leads to biophysical alterations that promote persistent firing. Because this firing is subsequent to the cholinergic input, inhibiting the acetylcholine receptor may represent a means of properly orchestrating synaptically induced changes in excitability.


Subject(s)
Membrane Potentials/physiology , Receptors, Cholinergic/metabolism , Tyrosine/metabolism , Acetylcholine/metabolism , Acetylcholine/pharmacology , Animals , Aplysia , Calcium/metabolism , Cations, Divalent/metabolism , Cells, Cultured , Genistein/pharmacology , Membrane Potentials/drug effects , Neurotransmitter Agents/pharmacology , Patch-Clamp Techniques , Phosphorylation/drug effects , Protein Kinase C/metabolism , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , Sphingosine/analogs & derivatives , Sphingosine/pharmacology , Tissue Culture Techniques
5.
Biotechnol Adv ; 27(5): 562-7, 2009.
Article in English | MEDLINE | ID: mdl-19393737

ABSTRACT

Despite the increasing importance of biomass pyrolysis, little is known about the pyrolysis behavior of lignin--one of the main components of biomass--due to its structural complexity and the difficulty in its isolation. In the present study, we extracted lignins from Manchurian ash (Fraxinus mandschurica) and Mongolian Scots pine (Pinus sylvestris var. mongolica) using the Bjorkman procedure, which has little effect on the structure of lignin. Fourier transform infrared (FTIR) spectrometry was used to characterize the microstructure of the Bjorkman lignins, i.e., milled wood lignins (MWLs), from the different tree species. The pyrolysis characteristics of MWLs were investigated using a thermogravimetric analyzer, and the release of the main volatile and gaseous products of pyrolysis were detected by FTIR spectroscopy. During the pyrolysis process, MWLs underwent thermo-degradation over a wide temperature range. Manchurian ash MWL showed a much higher thermal degradation rate than Mongolian Scots pine MWL in the temperature range from 290-430 degrees C. High residue yields were achieved at 37 wt.% for Mongolian Scots pine MWL and 26 wt.% for Manchurian ash MWL. In order to further investigate the mechanisms of lignin pyrolysis, we also analyzed the FTIR profiles for the main pyrolysis products (CO(2), CO, methane, methanol, phenols and formaldehyde) and investigated the variation in pyrolysis products between the different MWLs.


Subject(s)
Fraxinus/chemistry , Lignin/chemistry , Pinus/chemistry , Wood/chemistry , Hot Temperature , Species Specificity , Spectroscopy, Fourier Transform Infrared , Thermogravimetry
SELECTION OF CITATIONS
SEARCH DETAIL
...