Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biopharm Drug Dispos ; 44(2): 137-146, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36999487

ABSTRACT

The purpose of this work was to fabricate the microencapsulation of capsaicin using electrospray technology and polyvinylpyrrolidone (PVP) K30 as a carrier. The morphological characteristics of capsaicin-PVP electrosprayed microencapsulation complex under different processing parameters were observed by scanning electron microscope (SEM), while the best process was determined, wherein it comprised of 10 KV (voltage), 0.8 ml·h-1 (solution flow rate), 0.9 mm (the inner diameter of the needle), and 10 cm (receiving distance). The X-ray diffraction results of the electrosprayed complex showed that capsaicin was present in the carrier in an amorphous form. The drug release properties of capsaicin powder and electrosprayed complex in different media were investigated. The results showed that in vitro release rates of the capsaicin complex in different media were much higher than that of capsaicin powder, with correspondingly improved bioavailability, defined by intravenous and oral dosing in rats in vivo, for the electrosprayed complex compared to that of capsacin powder. The dose absorbed of the electrosprayed complex was 2.2-fold that of the capsaicin powder. In short, electrospray technology can be used to prepare capsaicin-loaded electrosprayed microencapsulation complex. This technique can improve the solubility and bioavailability of capsaicin, and provide a new idea for the solubilization of other insoluble drugs.


Subject(s)
Capsaicin , Povidone , Rats , Animals , Biological Availability , Powders , Administration, Oral , Solubility
2.
J Sci Food Agric ; 103(7): 3628-3637, 2023 May.
Article in English | MEDLINE | ID: mdl-36840513

ABSTRACT

BACKGROUND: Astaxanthin is a type of food-derived active ingredient with antioxidant, antidiabetic and non-toxicity functions, but its poor solubility and low bioavailability hinder further application in food industry. In the present study, through inclusion technologies, micellar solubilization and electrospray techniques, we prepared astaxanthin nanoparticles before optimizing the formulation to regulate the physical and chemical properties of micelles. We accomplished the preparation of astaxanthin nanoparticle delivery system based on single needle electrospray technology through use of 2-hydroxypropyl-ß-cyclodextrin and Soluplus® to improveme the release behavior of the nanocarrier. RESULTS: Through this experiment, we successfully prepared astaxanthin nanoparticles with a particle size of approximately 80 nm, which was further verified with scanning electron microscopy and transmission electron microscopy. Furthermore, the encapsulation of astaxanthin molecules into the carrier nanoparticles was verified via the results of attenuated total reflectance intensity and X-ray powder diffraction techniques. The in vitro release behavior of astaxanthin nanoparticles was different in media that contained 0.5% Tween 80 (pH 1.2, 4.5 and 6.8) buffer solution and distilled water. Also, we carried out a pharmacokinetic study of astaxanthin nanoparticles, in which it was observed that astaxanthin nanoparticle showed an effect of immediate release and significant improved bioavailability. CONCLUSION: 2-hydroxypropyl-ß-cyclodextrin and Soluplus® were used in the present study as a hydrophilic nanocarrier that could provide a simple way of encapsulating natural function food with repsect to improving the solubility and bioavailability of poorly water-soluble ingredients. © 2023 Society of Chemical Industry.


Subject(s)
Nanoparticles , 2-Hydroxypropyl-beta-cyclodextrin/chemistry , Nanoparticles/chemistry , Solubility , Biological Availability , Technology , Micelles , Water/chemistry
3.
AAPS PharmSciTech ; 23(4): 106, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35381887

ABSTRACT

Diosmetin (DIOS) is a functional compound with poor water solubility, bad permeability, and crystal form. Self-microemulsifying drug delivery system (SMEDDS) was an effective formulation to overcome these shortcomings. In this study, liquid SMEDDS was prepared using Capmul® MCM C8 EP/NF, Cremophor EL, and PEG 400 (2:5.6:2.4, w/w/w) as excipients. Then, the novel technology of electrospray solidified liquid SMEDDS and prepared solid SMEDDS for inhibiting crystallization. Polyvinyl pyrrolidone (PVP) was used as carrier to construct DIOS-loaded solid SMEDDS, with polyethylene oxide (PEO) contributing to the formation of regular sphere in the process of spinning. The particle size of solid SMEDDS (194 ± 5 nm) was much bigger than of liquid SMEDDS (25 ± 1 nm), while DIOS-loaded solid SMEDDS showed greater dissolution rates in pH 1.2 and pH 6.8 media through in vitro drug release study. The solid nanoparticles were smooth and uniform from the graph of a scanning electron microscope (SEM). The graph of a transmission electron microscope (TEM) showed that small droplets were loaded in the matrix. Furthermore, DIOS was encapsulated by matrix in amorphous state via differential scanning calorimetry (DSC) and attenuated total reflection Fourier transform infrared (ATR-FTIR). The crystalline of DIOS was not formed in solid SMEDDS due to the characteristic peaks of DIOS disappeared in X-ray diffraction (XRD) pattern. Therefore, the oral bioavailability of DIOS improved significantly compared with liquid SMEDDS (4.27-fold). Hence, solid SMEDDS could improve the solubility and bioavailability of DIOS, through transfer of the state of crystalline to amorphous by electrospray technology.


Subject(s)
Drug Delivery Systems , Administration, Oral , Biological Availability , Emulsions/chemistry , Flavonoids , Solubility
4.
J Sci Food Agric ; 102(3): 1002-1011, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34312873

ABSTRACT

BACKGROUND: Astaxanthin (ASTA) is a kind of food-derived active ingredient (FDAI) with antioxidant and antidiabetic functions. It is nontoxic but its poor solubility and low bioavailability hinder its application in the food industry. In this study, a novel carrier, polyethylene glycol-grafted chitosan (PEG-g-CS) was applied to enhance the bioavailability of astaxanthin. It encapsulated astaxanthin completely by solvent evaporation to manufacture astaxanthin using poly (ethylene glycol)-graft-chitosan nanoparticles (ASTA-PEG-g-CS) nanoparticles to improve absorption. RESULTS: The ASTA-PEG-g-CS nanoparticles were spherical, with a particle size below 200 nm and a ζ potential of about -26 mV. Polyethylene glycol-grafted chitosan can encapsulate astaxanthin well, and the encapsulated astaxanthin was released rapidly - in 15 min in an in vitro release study. In a rat single-pass intestinal perfusion study, a low concentration of ASTA-PEG-g-CS nanoparticle (0.2 µg mL-1 ) was better absorbed in the intestine. In particular, the jejunum could absorb most astaxanthin without a change in the concentration. An in vivo release study also demonstrated that ASTA-PEG-g-CS nanoparticles enhanced oral bioavailability significantly. CONCLUSION: This novel carrier, PEG-g-CS, provided a simple way to encapsulate food, which improved the bioavailability of hydrophobic ingredients. © 2021 Society of Chemical Industry.


Subject(s)
Intestines/metabolism , Administration, Oral , Animals , Biological Availability , Chitosan/chemistry , Drug Carriers/chemistry , Drug Compounding , Hydrophobic and Hydrophilic Interactions , Intestinal Absorption , Male , Nanoparticles/chemistry , Particle Size , Polyethylene Glycols/chemistry , Rats , Rats, Sprague-Dawley , Xanthophylls/administration & dosage , Xanthophylls/chemistry , Xanthophylls/pharmacokinetics
5.
Pharm Dev Technol ; 25(5): 617-624, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32009511

ABSTRACT

Piperine (Pip) has been widely studied for its multiple activities such as antidepressant, anti-epileptic, and so forth. However, the poor water solubility coupled with low bioavailability may inevitably hinder the application of Pip in the clinical setting. In this study, a formulation strategy was proposed to spontaneously resolve the low bioavailability and dose dividing issue of Pip. The matrix pellets (Pip-SR-pellets) consisting of Pip solid dispersion (Pip-SD) and hydroxypropylmethyl cellulose-K100 were developed to achieve an increased and sustained release profile in vitro. The Pip-SR-pellets were compacted into fast disintegrating tablets (FDTs) with a blend of excipients comprising lactose, MCC, LS-HPC, and CMS-Na. The Pip-SD was characterized by solubility study and XRD. The evaluation of the cross-sectional morphology of the Pip-FDTs via scanning electron microscope proved that Pip-SR-pellets maintained its structural integrity during compression and were uniformly distributed in the Pip-FDTs. The release profile of Pip-SR-pellets was highly consistent with the Pip-FDTs. In vivo pharmacokinetics study demonstrated that the relative bioavailability of Pip-SR-pellets was approximately 2.70-fold higher than that of the pure drug, and 1.62-fold compared with that of Pip-SD. This work therefore showed a potential industrialized method could be applied to formulate poorly water-soluble drug that has dose-dividing requirement.


Subject(s)
Alkaloids/administration & dosage , Alkaloids/chemistry , Benzodioxoles/administration & dosage , Benzodioxoles/chemistry , Drug Compounding/methods , Drug Liberation , Piperidines/administration & dosage , Piperidines/chemistry , Polyunsaturated Alkamides/administration & dosage , Polyunsaturated Alkamides/chemistry , Administration, Oral , Alkaloids/blood , Animals , Benzodioxoles/blood , Biological Availability , Delayed-Action Preparations , Dogs , Drug Stability , Excipients/chemistry , Male , Piperidines/blood , Polyunsaturated Alkamides/blood , Solubility , Surface Properties , Tablets
SELECTION OF CITATIONS
SEARCH DETAIL
...