Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 168
Filter
1.
Angew Chem Int Ed Engl ; : e202409588, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39060222

ABSTRACT

The wrinkles are pervasive in ultrathin two-dimensional (2D) materials, but the regulation of wrinkles is rarely explored systematically. However, the regulation of wrinkles at nanometer scale is merely explored. Here, we employed a series of carboxylic acids (from formic acid to octanoic acid) to control the wrinkles of Zr-BTB (BTB = 1, 3, 5-(4-carboxylphenyl)-benzene) metal-organic framework (MOF) nanosheet. The wrinkles at the micrometer scale were observed with transmission electron microscopy. Furthermore, high-angle annular dark-field (HAADF) images showed lattice distortion in many nanoscale regions, which was precisely matched to the nano-wrinkles. With the changes of hydrophilicity/hydrophobicity, MOF-MOF and MOF-solvent interactions were synergistically regulated and wrinkles with different sizes were obtained, which was supported by HAADF, molecular dynamics and density functional theory calculation. Different wrinkle sizes resulted in different pore sizes between the Zr-BTB nanosheet interlayers, providing highly-oriented thin films and the successive optimization of kinetic diffusion pathways, proved by grazing-incidence wide-angle X-ray scattering and nitrogen adsorption. The most suitable wrinkle pore from Zr-BTB-C4 exhibited highly efficient chromatographic separation of the substituted benzene isomers. Our work provides a rational route for the modulation of nanoscale wrinkles and their stacked pores of MOF nanosheets and improves the separation abilities of MOFs.

2.
ChemSusChem ; : e202401173, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38982867

ABSTRACT

Electrochemical CO2 reduction reaction (eCO2RR) to value-added multicarbon (C2+) products offers a promising approach for achieving carbon neutrality and storing intermittent renewable energy. Copper (Cu)-based electrocatalysts generally play the predominant role in this process. Yet recently, more and more non-Cu materials have demonstrated the capability to convert CO2 into C2+, which provides impressive production efficiency even exceeding those on Cu, and a wider variety of C2+ compounds not achievable with Cu counterparts. This motivates us to organize the present review to make a timely and tutorial summary of recent progresses on developing non-Cu based catalysts for CO2-to-C2+. We begin by elucidating the reaction pathways for C2+ formation, with an emphasis on the unique C-C coupling mechanisms in non-Cu electrocatalysts. Subsequently, we summarize the typical C2+-involved non-Cu catalysts, including ds-, d- and p-block metals, as well as metal-free materials, presenting the state-of-the-art design strategies to enhance C2+ efficiency. The system upgrading to promote C2+ productivity on non-Cu electrodes covering microbial electrosynthesis, electrolyte engineering, regulation of operational conditions, and synergistic co-electrolysis, is highlighted as well. Our review concludes with an exploration of the challenges and future opportunities in this rapidly evolving field.

3.
Se Pu ; 42(6): 524-532, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38845513

ABSTRACT

The stationary phase is the heart of chromatographic separation technology and a critical contributor to the overall separation performance of a chromatographic separation technique. However, traditional silicon-based materials designed for this purpose usually feature complex preparation processes, suboptimal permeability, pronounced mass-transfer resistance, and limited pH-range compatibility. These limitations have spurred ongoing research efforts aimed at developing new chromatographic stationary phases characterized by higher separation efficiency, adaptable selectivity, and a broader scope of applicability. In this context, the scientific community has made significant strides toward the development of new-generation materials suitable for use as chromatographic stationary phases. These materials include carbon-based nanomaterial arrays, carbon quantum dots, and two-dimensional (2D) materials. 2D-materials are characterized by nanometer-scale thicknesses, extensive specific surface areas, distinctive layered structures, and outstanding mechanical properties under standard conditions. Thus, these materials demonstrate excellent utility in various applications, such as electrical and thermal conductivity enhancements, gas storage and separation solutions, membrane separation technologies, and catalysis. Graphene, which is arguably the most popular 2D-material used for chromatographic separation, consists of a 2D-lattice of carbon atoms arranged in a single layer, with a large specific surface area and efficient adsorption properties. Its widespread adoption in research and various industries is a testament to its versatility and effectiveness. In addition to graphene, the scientific community has developed various 2D-materials that mirror the layered structures of graphene, such as boron nitride, transition-metal sulfides, and 2D porous organic frameworks, all of which offer unique advantages. 2D porous organic frameworks, in particular, have received attention because of their nanosheet morphology, one-dimensional pores, and special interlayer forces; thus, these frameworks are considered promising candidate chromatographic stationary phase materials. Such recognition is especially true for 2D-metal organic frameworks (MOFs) and 2D-covalent organic frameworks (COFs), which exhibit low densities, high porosities, and substantial specific surface areas. The modifiability of these materials, in terms of pore size, shape, functional groups, and layer-stacking arrangements allows for excellent separation selectivity, highlighting their promising potential in chromatographic separation. Compared with their three-dimensional counterparts, 2D-MOFs feature a simple pore structure that offers reduced mass-transfer resistance and enhanced column efficiency. These attributes highlight the advantages of 2D-MOF nanosheets as chromatographic stationary phases. Similarly, 2D-COFs, given their high specific surface area and porosity, not only exhibit great thermal stability and chemical tolerance but also support a wide selection of solvents and operational conditions. Therefore, their role in the preparation of chromatographic stationary phases is considered highly promising. This review discusses the latest research developments in 2D porous organic framework materials in the context of gas- and liquid-chromatographic stationary phases. It introduces the synthesis methods for these novel materials, elucidates their retention mechanisms, and describes the applications of other 2D-materials, such as graphene, its derivatives, graphitic carbon nitride, and boron nitride, in chromatography. This review aims to shed light on the promising development prospects and future directions of 2D-materials in the field of chromatographic separation, offering valuable insights into the rational design and application of new 2D-materials in chromatography.

4.
Anal Chem ; 96(21): 8325-8331, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38738931

ABSTRACT

The high expression of Spermidine/spermine N1-acetyltransferase (SSAT-1) is an important indicator in early cancer diagnosis. Here, we developed a nanopore-based methodology with γ-cyclodextrin as an adaptor to detect and quantify acetylamantadine, the specific SSAT-1-catalyzed product from amantadine, to accordingly reflect the activity of SSAT-1. We employ γ-cyclodextrin and report that amantadine cannot cause any secondary signals in γ-cyclodextrin-assisted α-HL nanopore, while its acetylation product, acetylamantadine, does. This allows γ-cyclodextrin to practically detect acetylamantadine in the interference of excessive amantadine, superior to the previously reported ß-cyclodextrin. The quantification of acetylamantadine was not interfered with even a 50-fold amantadine and displayed no interference in artificial urine sample analysis, which indicates the good feasibility of this nanopore-based methodology in painless cancer prediagnosis. In addition, the discrimination mechanism is also explored by 2-D nuclear magnetic resonance (NMR) and nanopore experiments with a series of adamantane derivatives with different hydrophilic and hydrophobic groups. We found that both the hydrophobic region matching effect and hydrophilic interactions play a synergistic effect in forming a host-guest complex to further generate the characteristic signals, which may provide insights for the subsequent design and study of drug-cyclodextrin complexes.


Subject(s)
Amantadine , Nanopores , gamma-Cyclodextrins , gamma-Cyclodextrins/chemistry , Humans , Amantadine/chemistry , Amantadine/analysis , Neoplasms
5.
Opt Lett ; 49(7): 1709-1712, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38560843

ABSTRACT

In previously reported researches on bound state in the continuum (BIC) waveguides, almost all of them are demonstrated with top-down fabrication procedures, leading to inconvenience for post-manipulation and size tuning. Nanofibers with circular cross sections are the fundamental components to transport energy due to their intrinsic advantages of high flexibility and adjustability, which is replaceable and can be readily manipulated over size and position on the substrate. In this work, we explore the possibility of achieving on-chip integration of silica nanofiber onto a silicon-on-insulator platform. By constructing additional leakage channels in coupled nanofiber waveguides, coherently destructive interferences are successfully achieved. The heavy leakage losses from the low-index nanofiber to a high-index silicon substrate are completely eliminated with BIC, and the propagation length of the nanofiber waveguide is significantly improved.

6.
Anal Chem ; 96(16): 6476-6482, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38606798

ABSTRACT

Modulating mass transfer is crucial for optimizing the catalytic and separation performances of porous materials. Here, we systematically developed a series of continuously tunable MOFs (CTMOFs) that exhibit incessantly increased mass transfer. This was achieved through the strategic blending of ligands with different lengths and ratios in MOFs featuring the fcu topology. By employing a proportional mixture of two ligands in the synthesis of UiO-66, the micropores expanded, facilitating faster mass transfer. The mass transfer rate was evaluated by dye adsorption, dark-field microscopy, and gas chromatography (GC). The GC performance proved that both too-fast and too-slow mass transfer led to low separation performance. The optimized mass transfer in CTMOFs resulted in an exceptionally high separation resolution (5.96) in separating p-xylene and o-xylene. Moreover, this study represents the first successful use of MOFs for high-performance separation of propylene and propane by GC. This strategy provides new inspiration in regulating mass transfer in porous materials.

7.
Chem Sci ; 15(11): 4106-4113, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38487231

ABSTRACT

The modulation of two-dimensional metal-organic framework (2-D MOF) nanosheet stacking is an effective means to improve the properties and promote the application of nanosheets in various fields. Here, we employed a series of alcohol guest molecules (MeOH, EtOH and PrOH) to modulate Zr-BTB (BTB = benzene-1,3,5-tribenzoate) nanosheets and to generate untwisted stacking. The distribution of stacking angles was statistically analyzed from high-angle annular dark-field (HAADF) and fast Fourier transform (FFT) images. The ratios of untwisted stacking were calculated, such as 77.01% untwisted stacking for MeOH, 83.45% for EtOH, and 85.61% for PrOH. The obtained untwisted Zr-BTB showed good separation abilities for different substituted benzene isomers, superior para selectivity and excellent column stability and reusability. Control experiments of 2-D Zr-TCA (TCA = 4,4',4''-tricarboxytriphenylamine) and Zr-TATB (TATB = 4,4',4''-(1,3,5-triazine-2,4,6-triyl)tribenzoic acid) nanosheets with similar pore sizes and stronger polarity regulated by the alcohol guests exhibited moderate separation performance. The electron microscopy images revealed that polar alcohol regulation dominantly generated the twisted stacking of Zr-TCA and Zr-TATB with various Moiré patterns. Polar guest molecules, such as alcohols, provide strong host-guest interactions during the regulation of MOF nanosheet stacking, providing an opportunity to design new porous Moiré materials with application prospects.

8.
BMC Oral Health ; 24(1): 48, 2024 01 08.
Article in English | MEDLINE | ID: mdl-38191341

ABSTRACT

BACKGROUND: The aim of this study was to evaluate the condylar morphological changes after orthodontic treatment in adult patients with Class II malocclusion using a Cone-beam computed tomography (CBCT). METHODS: Images of twenty-eight adult patients with Class II malocclusion who have no temporomandibular symptoms were involved in this study. To analyze the post-treatment changes in condylar morphology, mimics 17.0 software was used to measure several values and reconstruct the three-dimensional condyle, including height of the condyle, area and bone mineral density of the maximum axial and sagittal section, volume and bone mineral density of the three-dimensional condyle and condylar head before and after orthodontic treatment. Using SPSS 19.0 software package Paired t-test was applied for comparison of condylar morphology analysis between pre-treatment and post-treatment. RESULTS: Height of condylar head increase significant (P < .05). Bone mineral density showed a decrease in the maximum axial and sagittal section, three-dimensional condyle and condylar head (P < .01). Evaluation of volume revealed that volume of both condyle and condylar head decrease considerably (P < .05). No significant difference was detected in other values ((P > .05). CONCLUSION: Condylar volume decreased and height of condylar head have changed, so we speculated that adaptive bone remodeling of the condyle occurs.


Subject(s)
Bone Density , Malocclusion, Angle Class II , Adult , Humans , Cone-Beam Computed Tomography , Dental Care , Malocclusion, Angle Class II/diagnostic imaging , Malocclusion, Angle Class II/therapy , Bone and Bones
9.
Anal Chem ; 95(51): 18760-18766, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38078811

ABSTRACT

In separation science, precise control and regulation of the MOF stationary phase are crucial for achieving a high separation performance. We supposed that increasing the mass transfer resistance of MOFs with excessive porosity to achieve a moderate mass transfer resistance of the analytes is the key to conducting the MOF stationary phase with a high resolution. Three-dimensional UiO-67 (UiO-67-3D) and two-dimensional UiO-67 (UiO-67-2D) were chosen to validate this strategy. Compared with UiO-67-3D with overfast mass transfer and low retention, the reduced porosity of UiO-67-2D increased the mass transfer resistance of analytes in reverse, resulting in improved separation performance. Kinetic diffusion experiments were conducted to verify the difference in mass transfer resistance of the analytes between UiO-67-3D and UiO-67-2D. In addition, the optimization of the UiO-67-2D thickness for separation revealed that a moderate diffusion length of the analytes is more advantageous in achieving the equilibrium of absorption and desorption.

10.
Anal Chem ; 95(47): 17347-17353, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37970751

ABSTRACT

Selective recognition of short oligonucleotides at the single-molecule level is particularly important for early disease detection and treatment. In this work, polydopamine (PDA)-coated nanopores were prepared via self-polymerization as a solid-state nanopore sensing platform for the recognition of oligonucleotide C (PolyC). The PDA coating possesses abundant active sites, such as indole, amino, carboxyl, catechol, and quinone structures, which had interactions with short oligonucleotides to slow down the translocation rate. PDA-coated nanopores selectively interact with PolyC20 by virtue of differences in hydrogen bonding forces, generating a larger blocking current, while polyA and polyT demonstrated very small blockings. At the same time, PDA-coated nanopores can sensitively distinguish PolyC with different lengths, such as 20, 14, and 10 nt. The functionalization of PDA on the solid-state nanopore provides an opportunity for the rational design of the recognition surface for biomolecules.


Subject(s)
Nanopores , Oligonucleotides , Nanotechnology , Indoles
11.
Anal Chem ; 95(45): 16496-16504, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37916987

ABSTRACT

Protein identification and discrimination at the single-molecule level are big challenges. Solid-state nanopores as a sensitive biosensor have been used for protein analysis, although it is difficult to discriminate proteins with similar structures in the traditional discrimination method based on the current blockage fraction. Here, we select ferritin and apo-ferritin as the model proteins that exhibit identical exterior and different interior structures and verify the practicability of their discrimination with flexibility features by the strategy of gradually decreasing the nanopore size. We show that the larger nanopore (relative to the protein size) has no obvious effect on discriminating two proteins. Then, the comparable-sized nanopore plays a key role in discriminating two proteins based on the dwell time and fraction distribution, and the conformational changes of both proteins are also studied with this nanopore. Finally, in the smaller nanopore, the protein molecules are trapped rather than translocated, where two proteins are obviously discriminated through the current fluctuation caused by the vibration of proteins. This strategy has potential in the discrimination of other important similar proteins.


Subject(s)
Biosensing Techniques , Nanopores , Ferritins , Nanotechnology
12.
J Am Chem Soc ; 145(49): 26580-26591, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38029332

ABSTRACT

The precise modulation of nanosheet stacking modes introduces unforeseen properties and creates momentous applications but remains a challenge. Herein, we proposed a strategy using bipolar molecules as torque wrenches to control the stacking modes of 2-D Zr-1,3,5-(4-carboxylphenyl)-benzene metal-organic framework (2-D Zr-BTB MOF) nanosheets. The bipolar phenyl-alkanes, phenylmethane (P-C1) and phenyl ethane (P-C2), predominantly instigated the rotational stacking of Zr-BTB-P-C1 and Zr-BTB-P-C2, displaying a wide angular distribution. This included Zr-BTB-P-C1 orientations at 0, 12, 18, and 24° and Zr-BTB-P-C2 orientations at 0, 6, 12, 15, 24, and 30°. With reduced polarity, phenyl propane (P-C3) and phenyl pentane (P-C5) introduced steric hindrance and facilitated alkyl hydrophobic interactions with the nanosheets, primarily resulting in the modulation of eclipsed stacking for Zr-BTB-P-C3 (64.8%) and Zr-BTB-P-C5 (93.3%) nanosheets. The precise angle distributions of four Zr-BTB-P species were in agreement with theoretical calculations. The alkyl induction mechanism was confirmed by the sequential guest replacement and 2-D 13C-1H heteronuclear correlation (HETCOR). In addition, at the single-particle level, we first observed that rotational stacked pores exhibited similar desorption rates for xylene isomers, while eclipsed stacked pores showed significant discrepancy for xylenes. Moreover, the eclipsed nanosheets as stationary phases exhibited high resolution, selectivity, repeatability, and durability for isomer separation. The universality was proven by another series of bipolar acetate-alkanes. This bipolar molecular torque wrench strategy provides an opportunity to precisely control the stacking modes of porous nanosheets.

13.
Nat Commun ; 14(1): 5347, 2023 Sep 02.
Article in English | MEDLINE | ID: mdl-37660056

ABSTRACT

Tetraphenylethylene (TPE)-based ligands are appealing for constructing metal-organic frameworks (MOFs) with new functions and responsiveness. Here, we report a non-interpenetrated TPE-based scu Zr-MOF with anisotropic flexibility, that is, Zr-TCPE (H4TCPE = 1,1,2,2-tetra(4-carboxylphenyl)ethylene), remaining two anisotropic pockets. The framework flexibility is further anisotropically rigidified by installing linkers individually at specific pockets. By individually installing dicarboxylic acid L1 or L2 at pocket A or B, the framework flexibility along the b-axis or c-axis is rigidified, and the intermolecular or intramolecular motions of organic ligands are restricted, respectively. Synergistically, with dual linker installation, the flexibility is completely rigidified with the restriction of ligand motion, resulting in MOFs with enhanced stability and improved separation ability. Furthermore, in situ observation of the flipping of the phenyl ring and its rigidification process is made by 2H solid-state NMR. The anisotropic rigidification of flexibility in scu Zr-MOFs guides the directional control of ligand motion for designing stimuli-responsive emitting or efficient separation materials.

14.
Oral Dis ; 2023 Sep 03.
Article in English | MEDLINE | ID: mdl-37660361

ABSTRACT

OBJECTIVE: To investigate and explain the beneficial effects of local intra-articular injection of Salubrinal on temporomandibular joint osteoarthritis (TMJOA) using a rabbit model of anterior disc displacement (ADD). METHODS: Rabbits were divided and subjected to surgical ADD. Salubrinal was administered by intra-articular injection in the TMJ every other day for 2 and 4 weeks after operation. Histological examination and TUNEL staining were then performed. Immunohistochemistry, quantitative real-time PCR, and Western blot analysis were employed to evaluate the expression of endoplasmic reticulum (ER) stress-related markers, catabolic factors, extracellular matrix proteins, inflammatory factors, and nuclear factor-kappa B (NF-κB) activation. RESULTS: In the ADD groups, we found that Salubrinal partly reversed condylar cartilage deterioration according to the histological analysis. Salubrinal reduced chondrocytes apoptosis while increased matrix components including Collagen II and Aggrecan. Meanwhile, Salubrinal downregulated the catabolic expression of MMP13, ADAMTS5, VEGF, TNF-α, and IL-1ß. We also observed that Salubrinal inhibited ER stress activation by reducing the expression of GRP78, CHOP, ATF4, and Caspase-12. Additionally, Salubrinal suppressed the phosphorylation of NF-κB. CONCLUSION: These results indicate that Salubrinal alleviates cartilage degradation following ADD, suggesting that intra-articular injection of Salubrinal is a potential therapeutic approach for preventing TMJOA.

15.
BMC Endocr Disord ; 23(1): 126, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37264363

ABSTRACT

BACKGROUND: The association between thyroid hormone sensitivity and thyroid cancer is unknown, and we aimed to investigate the association between sensitivity to thyroid hormone indices and papillary thyroid carcinoma (PTC) in Chinese patients with thyroid nodules (TNs). METHODS: A total of 1,998 patients undergoing thyroid surgery due to TNs from Nanjing Drum Tower Hospital were included in this study. We evaluated central sensitivity to thyroid hormones, such as thyroid stimulating hormone index (TSHI), TSH T4 resistance index (TT4RI), thyroid feedback quantile-based index (TFQI), and parametric thyroid feedback quantile-based Index (PTFQI). Peripheral sensitivity to thyroid hormone was evaluated by FT3 to FT4 ratio. Multivariate logistic regression analysis was performed to evaluate the association between sensitivity to thyroid hormone indices and PTC risk. RESULTS: The results showed that central indices of thyroid hormone sensitivity, including TSHI, TT4RI, TFQI, and PTFQI, were positively associated with PTC risk. For each SD increase in TSHI, TT4RI, TFQI, and PTFQI, the odds ratios (OR, 95% CI) of PTC were 1.31 (1.18-1.46), 1.01 (1.01-1.02), 1.94 (1.45-2.60), and 1.82 (1.41-2.34), respectively. On the other hand, the association between peripheral sensitivity to thyroid hormone and PTC was significantly negative. For each SD increase in FT3/FT4 ratio, the OR (95% CI) of PTC was 0.18 (0.03-0.96), and a negative correlation was found between FT3/FT4 ratio and TNM staging of PTC. CONCLUSIONS: Sensitivity to thyroid hormone indices could be used as new indicators for predicting PTC in Chinese patients with TNs. Future researches are still needed to confirm our findings.


Subject(s)
Thyroid Neoplasms , Thyroid Nodule , Humans , Thyroid Cancer, Papillary/complications , Thyroid Nodule/surgery , East Asian People , Thyroid Hormones , Thyroid Neoplasms/epidemiology , Thyroid Neoplasms/surgery , Thyroid Neoplasms/complications , Thyrotropin
16.
Adv Mater ; 35(24): e2211399, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37037423

ABSTRACT

The ability to detect and distinguish biomolecules at the single-molecule level is at the forefront of today's biomedicine and analytical chemistry research. Increasing the dwell time of individual biomolecules in the sensing spot can greatly enhance the sensitivity of single-molecule methods. This is particularly important in solid-state nanopore sensing, where the detection of small molecules is often limited by the transit dwell time and insufficient temporal resolution. Here, a quad-nanopore is introduced, a square array of four nanopores (with a space interval of 30-50 nm) to improve the detection sensitivity through electric field manipulation in the access region. It is shown that dwell times of short DNA strands (200 bp) are prolonged in quad-nanopores as compared to single nanopores of the same diameter. The dependence of dwell times on the quad-pore spacing is investigated and it is found that the "retarding effect" increases with decreasing space intervals. Furthermore, ultra-short DNA (50 bp) detection is demonstrated using a 10 nm diameter quad-nanopore array, which is hardly detected by a single nanopore. Finally, the general utility of quad-nanopores has been verified by successful discrimination of two kinds of small molecules, metal-organic cage and bovine serum albumin (BSA).


Subject(s)
Nanopores , DNA/chemistry , Nanotechnology , Metals , Single Molecule Imaging/methods
17.
Appl Opt ; 62(5): 1136-1143, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36821210

ABSTRACT

We study the problem of misalignment aberration analysis and correction of the two-mirror telescopes with stop on the secondary mirror. The variation law of the system's aberration field is analyzed with nodal aberration theory when the primary mirror with an astigmatic figure error is misaligned. The analytic expression among the system wave aberration, misalignments, and astigmatism figure error is given, and the correction model of system misalignment aberration is established. The simulation experiment shows that the relative error of the prediction of system misalignment coma and astigmatism based on this model is less than 4.1%.

18.
J Am Chem Soc ; 145(4): 2195-2206, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36629383

ABSTRACT

Copper-based catalysts are widely explored in electrochemical CO2 reduction (CO2RR) because of their ability to convert CO2 into high-value-added multicarbon products. However, the poor stability and low selectivity limit the practical applications of these catalysts. Here, we proposed a simple and efficient asymmetric low-frequency pulsed strategy (ALPS) to significantly enhance the stability and the selectivity of the Cu-dimethylpyrazole complex Cu3(DMPz)3 catalyst in CO2RR. Under traditional potentiostatic conditions, Cu3(DMPz)3 exhibited poor CO2RR performance with the Faradaic efficiency (FE) of 34.5% for C2H4 and FE of 5.9% for CH4 as well as the low stability for less than 1 h. We optimized two distinguished ALPS methods toward CH4 and C2H4, correspondingly. The high selectivities of catalytic product CH4 (FECH4 = 80.3% and above 76.6% within 24 h) and C2H4 (FEC2H4 = 70.7% and above 66.8% within 24 h) can be obtained, respectively. The ultralong stability for 300 h (FECH4 > 60%) and 145 h (FEC2H4 > 50%) was also recorded with the ALPS method. Microscopy (HRTEM, SAED, and HAADF) measurements revealed that the ALPS method in situ generated and stabilized extremely dispersive and active Cu-based clusters (∼2.7 nm) from Cu3(DMPz)3. Meanwhile, ex situ spectroscopies (XPS, AES, and XANES) and in situ XANES indicated that this ALPS method modulated the Cu oxidation states, such as Cu(0 and I) with C2H4 selectivity and Cu(I and II) with CH4 selectivity. The mechanism under the ALPS methods was explored by in situ ATR-FTIR, in situ Raman, and DFT computation. The ALPS methods provide a new opportunity to boost the selectivity and stability of CO2RR.

19.
Adv Mater ; 35(15): e2209955, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36692193

ABSTRACT

The photo-electrochemical (PEC) oxidation of glycerol (GLY) to high-value-added dihydroxyacetone (DHA) can be achieved over a BiVO4 photoanode, while the PEC performance of most BiVO4 photoanodes is impeded due to the upper limits of the photocurrent density. Here, an enhanced Mie scattering effect of the well-documented porous BiVO4 photoanode is obtained with less effort by a simple annealing process, which significantly reduces the reflectivity to near zero. The great light absorbability increases the basic photocurrent density by 1.77 times. The selective oxidation of GLY over the BiVO4 photoanode results in a photocurrent density of 6.04 mA cm-2 and a DHA production rate of 325.2 mmol m-2 h-1 that exceeds all reported values. This work addresses the poor ability of nanostructured BiVO4 to harvest light, paving the way for further improvements in charge transport and transfer to realize highly efficient PEC conversion.

20.
Chem Sci ; 13(40): 11896-11903, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36320898

ABSTRACT

Local flexibility in a metal-organic framework is intriguing for reconstructing a microenvironment to distinguish different guest molecules by emphasizing their differences. Herein, guest-adaptive flexibility is observed in a metal-organic framework for efficiently discriminating aromatic isomers. Microcrystal electron diffraction directly reveals that the anthracene rings can rotate around the single bond with the adsorption of guest molecules. Disorder transformation of the ligand enables the preferential adsorption of ethylbenzene over other xylene isomers. Especially, a coated capillary column combining single/multi-component adsorption confirms a unique separation order of ethylbenzene > p-xylene > m-xylene > o-xylene with excellent selectivities, which has not been reported in other materials. Density functional theory calculations and the calculated Hirshfeld surface of guest molecules in the framework demonstrate that a guest-induced splint-like confinement structure makes the main contribution to such separation performance. This finding will provide a rational strategy for molecular recognition utilizing the local flexibility of metal-organic frameworks.

SELECTION OF CITATIONS
SEARCH DETAIL
...