Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 115
Filter
1.
Sci Total Environ ; 930: 172561, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38641104

ABSTRACT

Environmental stressors such as salinity fluctuations can significantly impact the ecological dynamics of mussel beds. The present study evaluated the influence of hyposalinity stress on the detachment and survival of attached mussels by simulating a mussel farming model in a laboratory setting. Byssus production and mechanical properties of thread in response to varying salinity levels were assessed, and histological sections of the mussel foot were analyzed to identify the changes in the byssus secretory gland area. The results showed that hyposalinity stress (20 and 15 psu) led to a significant decrease in mussel byssus secretion, delayed initiation of new byssus production, and reduced plaque adhesion strength and breaking force of byssal threads compared to the control (30 psu) (p < 0.05). The complete suppression of byssal thread secretion in mussels under salinity conditions of 10 and 5 psu, leading to lethality, indicates the presence of a blockade in byssus secretion when mussels are subjected to significant physiological stressors. Histological analysis further demonstrated a decrease in the percentage of foot secretory gland areas in mussels exposed to low salinities. However, contrary to expectations, the study found that mussels did not exhibit marked detachment from ropes in response to the reduced salinity levels during one week of exposure. Hyposalinity stress exposure reduced the byssal secretion capacity and the mechanical properties of threads, which could be a cause for the detachment of suspension-cultured mussels. These results highlight the vulnerability of mussels to hyposalinity stress, which significantly affects their byssus mechanical performance.


Subject(s)
Salinity , Animals , Stress, Physiological , Bivalvia/physiology , Salt Stress
2.
Sci Total Environ ; 922: 171375, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38431162

ABSTRACT

Alkyl glycosides (AGs), commonly used nonionic surfactants, may have toxic effects on the environmental organisms. However, the complex concentration-response patterns of AGs with varying alkyl side chains and their mixtures have not been thoroughly studied. Therefore, the luminescence inhibition toxicities of six AGs with different alkyl side chains, namely, ethyl (AG02), butyl (AG04), hexyl (AG06), octyl (AG08), decyl (AG10), and dodecyl (AG12) glucosides, were determined in Vibrio qinghaiensis sp. -Q67 (Q67) at 0.25, 3, 6, 9, and 12 h. The six AGs exhibited time- and side-chain-dependent nonmonotonic concentration- responses toward Q67. AG02, with a short side chain, presented a concentration-response curve (CRC) with two peaks after 6 h and stimulated the luminescence of Q67 at both 6 and 9 h. AG04, AG06, and AG08 showed S-shaped CRCs at five exposure time points, and their toxicities increased with the side-chain length. AG10 and AG12, with long side chains, exhibited hormesis at 9 and 12 h. Molecular docking was performed to explore the mechanism governing the possible influence of AGs on the luminescence response. The effects of AGs on Q67 could be attributed to multiple luminescence-regulatory proteins, including LuxA, LuxC, LuxD, LuxG, LuxI, and LuxR. Notably, LuxR was identified as the primary binding protein among the six AGs. Given that they may co-exist, binary mixtures of AG10 and AG12 were designed to explore their concentration-response patterns and interactions. The results revealed that all AG10-AG12 binary mixture rays showed time-dependent hormesis on Q67, similar to that shown by their individual components. The interactions of these binary mixtures were mainly characterized by low-concentration additive action and high-concentration synergism at different times.


Subject(s)
Glycosides , Vibrio , Glycosides/toxicity , Molecular Docking Simulation , Drug Interactions , Trans-Activators/pharmacology
4.
Environ Res ; 248: 118418, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38316386

ABSTRACT

There is potential for personal care products (PCPs) components and mixtures to induce hormesis. How hormesis is related to time and transmitted from components to mixtures are not clear. In this paper, we conducted determination of components in 16 PCP products and then ran frequent itemset mining on the component data. Five high-frequency components (HFCs), betaine (BET), 1,3-butanediol (BUT), ethylenediaminetetraacetic acid disodium salt (EDTA), glycerol (GLO), and phenoxyethanol (POE), and 14 mixtures were identified. For each mixture system, one mixture ray with the actual mixture ratios in the products was selected. Time-dependent microplate toxicity analysis was used to test the luminescence inhibition toxicity of five HFCs and 14 mixture rays to Vibrio qinghaiensis sp.-Q67 at 12 concentration gradients and eight exposure times. It is showed that BET, EDTA, POE, and 13 mixture rays containing at least one J-type component showed time-dependent hormesis. Characteristic parameters used to describe hormesis revealed that the absolute value of the maximum stimulatory effect (|Emin|) generally increased with time. Notably, mixtures composed of POE and S-type components showed greater |Emin| than POE alone at the same time. Importantly, the maximum stimulatory effective concentration, NOEC/the zero effective concentration point, and EC50 remained relatively stable. Nine hormesis transmission phenomena were observed in different mixture rays. While all mixtures primarily exhibited additive action, varying degrees of synergism and antagonism were noted in binary mixtures, with no strong synergism or antagonism observed in ternary and quaternary mixtures. These findings offer valuable insights for the screening of HFCs and their mixtures, as well as the study of hormesis transmission in personal care products.


Subject(s)
Cosmetics , Vibrio , Hormesis , Edetic Acid
5.
Sci Total Environ ; 904: 167204, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37741385

ABSTRACT

Disinfectants and their mixtures can induce hormesis. However, how the mixture hormesis is related to those of components and the interactions in disinfectant mixtures remain unclear. In this paper, the luminescence inhibition toxicities of chlorinated sodium phosphate (CSP), dodecyl dimethyl benzyl ammonium bromide (DOB), dodecyl dimethyl benzyl ammonium chloride (DOC), ethanol (EtOH), glutaraldehyde (GLA), hydrogen peroxide (H2O2), isopropyl alcohol (IPA), n-propanol (NPA), and 20 mixture rays in four mixture systems (EtOH-H2O2, DOB-H2O2, DOC-EtOH, and EtOH-IPA-NPA) containing at least one component showing hormesis to Vibrio qinghaiensis sp.-Q67 (Q67) were determined at 0.25, 3, 6, 9, and 12 h. The synergism-antagonism heatmap based on independent action model (noted as SAHmapIA) was developed to systematically evaluate the interactions in various mixtures. It was shown that five disinfectants (CSP, EtOH, H2O2, NPA, and IPA) and 17 mixture rays exhibited time-dependent hormesis. The hormetic component was responsible for the hormesis of the mixture rays. Most mixture rays showed low- concentration/dose additive action and high-concentration/dose synergism at different time. This study further exemplified the interrelationship between the hormesis in the mixtures and their components and implied the need to pay attention to the time-dependent hormesis and interactions induced by the disinfectants.


Subject(s)
Disinfectants , Vibrio , Hormesis , Disinfectants/toxicity , Hydrogen Peroxide , Drug Interactions
6.
Proc Natl Acad Sci U S A ; 120(36): e2221982120, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37643215

ABSTRACT

Stem cells in organoids self-organize into tissue patterns with unknown mechanisms. Here, we use skin organoids to analyze this process. Cell behavior videos show that the morphological transformation from multiple spheroidal units with morphogenesis competence (CMU) to planar skin is characterized by two abrupt cell motility-increasing events before calming down. The self-organizing processes are controlled by a morphogenetic module composed of molecular sensors, modulators, and executers. Increasing dermal stiffness provides the initial driving force (driver) which activates Yap1 (sensor) in epidermal cysts. Notch signaling (modulator 1) in epidermal cyst tunes the threshold of Yap1 activation. Activated Yap1 induces Wnts and MMPs (epidermal executers) in basal cells to facilitate cellular flows, allowing epidermal cells to protrude out from the CMU. Dermal cell-expressed Rock (dermal executer) generates a stiff force bridge between two CMU and accelerates tissue mixing via activating Laminin and ß1-integrin. Thus, this self-organizing coalescence process is controlled by a mechano-chemical circuit. Beyond skin, self-organization in organoids may use similar mechano-chemical circuit structures.


Subject(s)
Epidermis , Skin , Personality , Organoids , Emotions , Adaptor Proteins, Signal Transducing
7.
Sci Total Environ ; 904: 166651, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37647971

ABSTRACT

Hormesis is a widely recognized and extensively studied phenomenon. However, few studies have described the quantitative characteristics of hormesis required for appropriate risk assessment. Although skin care product (SCP) mixtures and their active ingredients can induce the hormesis of Vibrio qinghaiensis sp.-Q67 (Q67), the quantitative characteristics of time-dependent hormetic dose responses in SCPs have not yet been investigated. In this study, 28 SCP mixtures were tested for luminescence toxicity against Q67 after five exposure durations (0.25, 3, 6, 9, and 12 h). With increasing exposure duration, the concentration response curves (CRCs) were classified as constant monotonic nonlinear (S-shaped) for four SCPs, S- to hormetic (J-shaped) for 13 SCPs, and constant J-shaped for 11 SCPs. Of 140 CRCs, 98 were J-shaped. An increased frequency of SCPs inducing hormesis was observed. The toxicity (pEC50) of the SCPs was independent of the exposure duration and product type. The maximum stimulatory effect (Emin) of the 12 SCPs increased with exposure duration. We proposed a modified parameter, the width of inhibition dose zone (WIDZ; EC50/EC10), to depict the width of inhibition dose zone. The WIDZ of S-shaped CRCs were significantly larger than that of J-shaped CRCs. In addition, the characteristic parameters reported in the general literature were analyzed. The good linear relationship between EC50 and the maximum stimulatory effective concentration (ECmin) indicated that toxicity may be transformed into stimulatory effects over exposure durations. The width of stimulation dose zone (WSDZ) and Emin of the seven SCPs had the same increasing trends with increasing exposure duration. The combination of WIDZ with other characteristic parameters (e.g., zero effective concentration point, ECmin, etc.) could better depict hormesis with low-dose stimulation and high-dose inhibition. The quantitative characteristics of the dose-responses of hormesis-inducing SCPs could provide reference basis for the risk assessment of SCP mixtures.


Subject(s)
Hormesis , Vibrio , Luminescence , Skin Care
8.
Small Methods ; 7(11): e2300749, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37572378

ABSTRACT

Developing smart hydrogels with excellent physicochemical properties and multi-sensing capabilities for various simulation of human skin's functions still remains a great challenge. Here, based on simple and convenient one-step covalent cross-linking method enhanced by dynamic RS-Ag interactions, a skin-inspired multifunctional conductive hydrogel with desirable physicochemical properties (including high stretchability, self-adhesion, self-healing, decomposition and removability) is developed for highly sensitive dual-sensing of temperature and strain. Benefiting from the synergistic action of multiple hydrogen bonds, RS-Ag bonds and S-S bonds, the gel exhibited a novel thermosensitive mechanism. The prepared hydrogels exhibited extremely high mechanical properties (maximum tensile strength of 0.35 MPa, elongation at break nearly 1800%, compressive stress over 4.43 MPa), excellent self-healing (96.82% (stress), 88.45% (temperature), 73.89% (mechanical property)), decomposition (the molecular weight after decomposition is below 700) and self-adhesion (enhanced contact with the material interface). In addition, this conductive hydrogel could also simultaneously achieve highly sensitive temperature-sensing (TCR: 10.89) and stress-sensing (GF: 1.469). As a proof-to-concept, the hydrogel displayed superior capability for simulation of human skin to perception of touch, pressure and ambient temperature simultaneously, indicating promising applications in the fields of wearable devices, personal health care, and human-machine interfaces.


Subject(s)
Flower Essences , Prunella , Touch Perception , Humans , Hydrogels , Temperature , Skin , Touch , Fever
9.
Sci Total Environ ; 893: 164918, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37327899

ABSTRACT

With the widespread use of pesticides, the coexistence of multiple low-residue pesticides in environmental media has increased significantly, and the "cocktail" effect caused by this phenomenon has garnered increasing attention. However, owing to the scarcity of information regarding the modes of action (MOAs) of chemicals, the application of concentration addition (CA) models for evaluating and predicting the toxicity of mixture with similar MOAs is limited. Additionally, the joint toxicity laws of complex mixture systems to different toxicity endpoints in organisms remain unclear, and effective methods to test the mixture toxicity on lifespan and reproductive inhibition are lacking. Therefore, in this study, the similarity of pesticide MOAs was characterized using molecular electronegativity-distance vector (MEDV-13) descriptors based on eight pesticides (aldicarb, methomyl, imidacloprid, thiamethoxam, dichlorvos, dimethoate, methamidophos and triazophos). Additionally, the methods of lifespan and reproduction inhibition microplate toxicity analysis of elegans (EL-MTA and ER-MTA) were established to test the lifespan and reproduction inhibition toxicity of Caenorhabditis elegans. Finally, a unified scale synergistic-antagonistic heatmap (SAHscale) method was proposed to explore the combined toxicity of the mixtures on the lifespan, reproduction, and mortality of nematodes. The results showed that the MEDV-13 descriptors could effectively characterize the similarity in MOAs. The lifespan and reproductive ability of Caenorhabditis elegans were significantly inhibited when the pesticide exposure concentration was one order of magnitude lower than the lethal dose. The sensitivity of lifespan and reproductive endpoints to mixtures was dependent on the concentration ratio. The same rays in the mixture had consistent toxicity interactions on the lifespan and reproductive endpoints of Caenorhabditis elegans. In conclusion, we demonstrated the feasibility of MEDV-13 in characterizing the similarity of MOAs, and provided a theoretical basis for exploring the mechanism of chemical mixtures by studying their apparent toxicity of mixtures on nematode lifespan and reproduction endpoints.


Subject(s)
Nematoda , Pesticides , Animals , Caenorhabditis elegans , Pesticides/toxicity , Dose-Response Relationship, Drug , Dimethoate
10.
Front Physiol ; 14: 1150521, 2023.
Article in English | MEDLINE | ID: mdl-37064882

ABSTRACT

Mytilus coruscus is a dominant shellfish in the Yangtze estuary and its adjacent sea area. Food deprivation often occurs during their growth due to fluctuations in algal abundance caused by seasonal freshwater flushing and high-density aquaculture mode. To investigate the coping strategies of M. coruscus to starvation stress, electron microscopy and differential proteomic analysis were performed on the critical feeding organ gill of the mussels after 9 days of starvation. The electron microscopy results showed that the cilia of the mussel gills were dissolved, and the gaps between gill filaments widened under starvation. Differential proteomic analysis revealed that phagocytosis-related proteins such as ATPeV1E, ATPeV1C, LAMP1_2 and CTSL were significantly upregulated, and the phagocytosis pathway was significantly enriched (p < 0.05). In addition, the corin content in gill and myeloperoxidase level as well as the number of dead cells in blood were both significantly increased (p < 0.05). What's more, proteomic data suggested that immune maintenance, cellular transport and metabolism related pathways were significantly enriched, which illustrated an immune and metabolism responses under starvation. This study reveals for the first time that phagocytosis functions as an essential strategy for M. coruscus to cope with starvation, which provides new scientific knowledge and a theoretical basis for understanding the adaptation mechanisms of mussel to starvation and for rational optimization of mussel culture patterns.

11.
Environ Int ; 175: 107940, 2023 05.
Article in English | MEDLINE | ID: mdl-37119652

ABSTRACT

The research framework combining global sensitivity analysis (GSA) with quantitative high-throughput screening (qHTS), called GSA-qHTS, provides a potentially feasible way to screen for important factors that induce toxicities of complex mixtures. Despite its value, the mixture samples designed using the GSA-qHTS technique still have a shortage of unequal factor levels, which leads to an asymmetry in the importance of elementary effects (EEs). In this study, we developed a novel method for mixture design that enables equal frequency sampling of factor levels (called EFSFL) by optimizing both the trajectory number and the design and expansion of the starting points for the trajectory. The EFSFL has been successfully employed to design 168 mixtures of 13 factors (12 chemicals and time) that each have three levels. By means of high-throughput microplate toxicity analysis, the toxicity change rules of the mixtures are revealed. Based on EE analysis, the important factors affecting the toxicities of the mixtures are screened. It was found that erythromycin is the dominant factor and time is an important non-chemical factor in mixture toxicities. The mixtures can be classified into types A, B, and C mixtures according to their toxicities at 12 h, and all the types B and C mixtures contain erythromycin at the maximum concentration. The toxicities of the type B mixtures increase firstly over time (0.25 âˆ¼ 9 h) and then decrease (12 h), while those of the type C mixtures consistently increase over time. Some type A mixtures produce stimulation that increases with time. With the present new approach to mixture design, the frequency of factor levels in mixture samples is equal. Consequently, the accuracy of screening important factors is improved based on the EE method, providing a new method for the study of mixture toxicity.


Subject(s)
Vibrio , Erythromycin/pharmacology , Complex Mixtures , High-Throughput Screening Assays
12.
Biosensors (Basel) ; 12(10)2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36291012

ABSTRACT

Establishing a systematic molecular information analysis strategy for cell culture models is of great significance for drug development and tissue engineering technologies. Here, we fabricated single silver nanowires with high surface-enhanced Raman scattering activity to extract SERS spectra in situ from two-dimensional (2D) and three-dimensional (3D) cell culture models. The silver nanowires were super long, flexible and thin enough to penetrate through multiple cells. A single silver nanowire was used in combination with a four-dimensional microcontroller as a cell endoscope for spectrally analyzing the components in cell culture models. Then, we adopted a machine learning algorithm to analyze the obtained spectra. Our results show that the abundance of proteins differs significantly between the 2D and 3D models, and that nucleic acid-rich and protein-rich regions can be distinguished with satisfactory accuracy.


Subject(s)
Nanowires , Nucleic Acids , Silver , Cell Culture Techniques, Three Dimensional , Spectrum Analysis, Raman/methods , Molecular Imaging
13.
Brain Behav ; 11(11): e2364, 2021 11.
Article in English | MEDLINE | ID: mdl-34554655

ABSTRACT

BACKGROUND: Tobacco use is one of the most important risk factors for health, and China is the largest producer and consumer of tobacco in the world. Monitoring and controlling the tobacco epidemic is an important issue. However, the motivation underlying smoking behavior is complex and specific to the individual. The Habit, Reward and Fear Scale (HRFS) is a feasible tool to evaluate this complex motivation. OBJECTIVES: To validate the psychometric properties of the HRFS Chinese version (HRFS-C) and to assess the relationship between motivation and smoking behavior. METHOD: We recruited 967 participants through social media and assessed their smoking behavior with three instruments: the Fagerstrom Test for Nicotine Dependence-Chinese version (FTND-C), the Questionnaire on Smoking Urges-Brief Scale-Chinese version (QSU-brief-C), and the HRFS-C. Ultimately, we retained 700 valid data points. Cronbach's α and split-half tests were used to evaluate the reliability. Confirmatory factor analysis, Pearson's r and an analysis of variance (ANOVA) were used to evaluate the validity. In addition, linear regression was used to explore the relationship among the three instruments. The HRFS-C showed good homogeneity (α = 0.965), concurrent validity, and discriminant validity. A significant linear relationship was observed among the FTND-C, QSU-brief-C, and HRFS-C (p < .001). CONCLUSION: The motivation measured by the HRFS-C can significantly predict nicotine dependence and craving in the smoking population. The HRFS-C can be used to carry out targeted interventions for addicted patients (e.g., motivational enhancement therapy).


Subject(s)
Habits , Reward , Fear , Humans , Psychometrics , Reproducibility of Results , Surveys and Questionnaires
14.
Medicine (Baltimore) ; 100(25): e26264, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34160390

ABSTRACT

BACKGROUND: Antiphospholipid antibody syndrome (APS) is a systemic, autoimmune, prothrombotic disease characterized by persistent antiphospholipid antibodies, thrombosis, recurrent abortion, complications during pregnancy, and occasionally thrombocytopenia. At present, there is no consensus on the treatment of this disease. Long-term anticoagulation is recommended in most cases in patients with thrombotic APS. This study aimed to evaluate whether aspirin combined with low-molecular-weight heparin (LMWH) can improve the live birth rate in antiphospholipid syndrome and its correlation with D-dimer. METHODS: The data were retrieved from the WanFang Data, CBM, VIP, CNKI, the Cochrane Library, PubMed, EMBASE, OVID, and Web of Science databases. We collected data on randomized controlled trials of aspirin combined with LMWH in the treatment of pregnant women with APS. The "Risk of Bias Assessment" tool and the "Jadad Scale" provided by the Cochrane Collaboration were used to evaluate the risk of bias and quality of the collected literature. The risk ratio (RR) and its 95% confidence interval (CI) were determined using Statase-64 software. RESULTS: In this study, a total of 11 studies were included, comprising a total of 2101 patients. The live birth rate in pregnant women with APS was higher on administration of aspirin combined with LMWH than with aspirin alone (RR = 1.29, 95% CI = 1.22-1.35, P < .001). d-dimer concentration in plasma predicted the live birth rate, which was higher below the baseline than above it (RR = 1.16, 95% CI = 1.09-1.23, P < .001). The subgroup analysis of the live birth rate was carried out based on the course of treatment, and the results were consistent with the overall results. Begg funnel plot test revealed no publication bias. Sensitivity analysis showed that deleting any study did not affect the results. CONCLUSION: Aspirin combined with LMWH for APS may improve live birth rate, and detection of d-dimer levels in APS pregnant women may predict pregnancy complications and guide the use of anticoagulants.


Subject(s)
Abortion, Habitual/prevention & control , Anticoagulants/administration & dosage , Antiphospholipid Syndrome/drug therapy , Pregnancy Complications, Hematologic/drug therapy , Thrombosis/drug therapy , Abortion, Habitual/blood , Abortion, Habitual/immunology , Antibodies, Antiphospholipid/blood , Antibodies, Antiphospholipid/immunology , Antiphospholipid Syndrome/blood , Antiphospholipid Syndrome/complications , Antiphospholipid Syndrome/immunology , Aspirin/administration & dosage , Biomarkers/blood , Birth Rate , Drug Therapy, Combination/methods , Female , Fibrin Fibrinogen Degradation Products/analysis , Heparin, Low-Molecular-Weight/administration & dosage , Humans , Live Birth , Pregnancy , Pregnancy Complications, Hematologic/blood , Pregnancy Complications, Hematologic/diagnosis , Pregnancy Complications, Hematologic/immunology , Prognosis , Randomized Controlled Trials as Topic , Thrombosis/blood , Thrombosis/complications , Thrombosis/immunology , Treatment Outcome
16.
ACS Appl Mater Interfaces ; 11(40): 37330-37337, 2019 Oct 09.
Article in English | MEDLINE | ID: mdl-31525871

ABSTRACT

Blu-ray discs (BDs) are advantageous in comparison with other optical discs (compact discs and digital versatile discs) in terms of not only their storage capacity but also the high-quality materials fabricated from. We have recently discovered that the "Hard Coat" film of Verbatim BDs is in fact a unique type of polymeric substrates that can be readily activated and adapted for biochip fabrications. Particularly, the Hard Coat film peeled from BDs is optically transparent without any fluorescence background, which can be activated by treating with a common base (1.0 M NaOH) at a slightly elevated temperature (55 °C). The surface density of reactive carboxylic acid groups generated, 6.6 ± 0.7 × 10-9 mol/cm2, is much higher than that on polycarbonate upon UV/ozone irradiation (4.8 ± 0.2 × 10-10 mol/cm2). There are no significant physical damages to the substrate morphology, and the aging effect is minimal. More importantly, the BD substrate can be patterned using either cut-out filter paper masks or microfluidic channel plates; both are lithography-free, bench-top methods that facilitate the device fabrication in a common laboratory setting. With classical biotin-streptavidin binding and DNA hybridization arrays as trial systems, we have also demonstrated this new type of biochip substrates for quantitative assay applications.


Subject(s)
Microchip Analytical Procedures/methods , Printing , Biotin/chemistry , Streptavidin/chemistry , Surface Properties
17.
J Ovarian Res ; 12(1): 35, 2019 Apr 22.
Article in English | MEDLINE | ID: mdl-31010415

ABSTRACT

Ovarian cancer (OC) is the highest frequent malignant gynecologic tumor with very complicated pathogenesis. The purpose of the present academic work was to identify significant genes with poor outcome and their underlying mechanisms. Gene expression profiles of GSE36668, GSE14407 and GSE18520 were available from GEO database. There are 69 OC tissues and 26 normal tissues in the three profile datasets. Differentially expressed genes (DEGs) between OC tissues and normal ovarian (OV) tissues were picked out by GEO2R tool and Venn diagram software. Next, we made use of the Database for Annotation, Visualization and Integrated Discovery (DAVID) to analyze Kyoto Encyclopedia of Gene and Genome (KEGG) pathway and gene ontology (GO). Then protein-protein interaction (PPI) of these DEGs was visualized by Cytoscape with Search Tool for the Retrieval of Interacting Genes (STRING). There were total of 216 consistently expressed genes in the three datasets, including 110 up-regulated genes enriched in cell division, sister chromatid cohesion, mitotic nuclear division, regulation of cell cycle, protein localization to kinetochore, cell proliferation and Cell cycle, progesterone-mediated oocyte maturation and p53 signaling pathway, while 106 down-regulated genes enriched in palate development, blood coagulation, positive regulation of transcription from RNA polymerase II promoter, axonogenesis, receptor internalization, negative regulation of transcription from RNA polymerase II promoter and no significant signaling pathways. Of PPI network analyzed by Molecular Complex Detection (MCODE) plug-in, all 33 up-regulated genes were selected. Furthermore, for the analysis of overall survival among those genes, Kaplan-Meier analysis was implemented and 20 of 33 genes had a significantly worse prognosis. For validation in Gene Expression Profiling Interactive Analysis (GEPIA), 15 of 20 genes were discovered highly expressed in OC tissues compared to normal OV tissues. Furthermore, four genes (BUB1B, BUB1, TTK and CCNB1) were found to significantly enrich in the cell cycle pathway via re-analysis of DAVID. In conclusion, we have identified four significant up-regulated DEGs with poor prognosis in OC on the basis of integrated bioinformatical methods, which could be potential therapeutic targets for OC patients.


Subject(s)
Computational Biology/methods , Ovarian Neoplasms/genetics , Female , Humans , Ovarian Neoplasms/mortality , Ovarian Neoplasms/pathology , Prognosis , Survival Analysis
18.
Biochem Biophys Res Commun ; 501(3): 758-764, 2018 06 27.
Article in English | MEDLINE | ID: mdl-29758195

ABSTRACT

Metastasis is the major cause for the death of patients with colorectal cancer (CRC). Anoikis resistance enhances the survival of cancer cells during systemic circulation, thereby facilitating secondary tumor formation in distant organs. miR-124 is a pleiotropically tumor suppressive small non-coding molecule. However, its role and mechanism in the regulation of cancer cell anoikis are still unknown. Here, we found that overexpression of miR-124 promotes anoikis of CRC cells in vitro and in vivo. In silico analysis and the experimental evidence supported that ITGA3 is a bona fide target of miR-124. Moreover, we identifies that ITGA3 plays a critical role in the regulation of anoikis sensitivity in CRC cells. Finally, our analysis in TCGA datasets demonstrates that high levels of ITGA3 are closely associated with poor prognosis in CRC patients. Collectively, we establish a functional link between miR-124 and anoikis susceptibility and provide that a miR-124/ITGA3 axis could be a potential target for the treatment of metastatic CRC.


Subject(s)
Anoikis , Colorectal Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Integrin alpha3/genetics , MicroRNAs/genetics , Neoplasm Metastasis/genetics , Cell Line , Cell Line, Tumor , Cell Movement , Colorectal Neoplasms/pathology , Humans , Neoplasm Metastasis/pathology
19.
ACS Appl Mater Interfaces ; 10(14): 11785-11793, 2018 Apr 11.
Article in English | MEDLINE | ID: mdl-29553249

ABSTRACT

In this study, a multifunctional wearable sensing device based on two different graphene films is fabricated and can achieve the simultaneous detection of physiological signals and volatile organic compound (VOC) biomarkers without mutual signal interference. The wearable device was designed with two sensing components: on the upper layer of the device, four kinds of porphyrin-modified reduced graphene oxide (rGO) films were prepared and used for a sensor array that could sufficiently react with VOC vapors to achieve highly sensitive detection. A porous rGO film was designed on the underlayer of the device and used as a strain-sensing matrix, which could be closely attached to the skin to achieve a highly sensitive detection of the physiological signal. A polyimide film between the two sensing components was used not only as a flexible substrate, but also as a protective layer to avoid the porous rGO film's response to VOC molecules. Investigation of the detection ability showed that the porous rGO strain-sensing matrix can achieve a higher gauge factor (282.28) than the unstructured rGO counterpart (8.96) and is more desirable for the detection of physiological motion. In contrast, the porphyrin-modified rGO sensor array displayed a superior response to VOC vapors, and eight different VOC biomarkers could be detected and discriminated using the as-prepared sensor array together with a pattern recognition approach. The multifunctional sensing devices displayed excellent ability for the detection of a variety of human physiological signals, such as pulse and respiration rates. Simultaneous analysis of simulated diabetic breath samples, simulated nephrotic breath samples, and breath samples exhaled by healthy individuals using our wearable device exhibited clear identification and discrimination. Our study provides new insights into fabrication and design of multifunctional sensing devices without signal interference, and the application of the proposed devices are promising in preventive medicine and health care.


Subject(s)
Wearable Electronic Devices , Biomarkers , Graphite , Humans , Oxides , Volatile Organic Compounds
20.
Nanoscale ; 10(4): 2090-2098, 2018 Jan 25.
Article in English | MEDLINE | ID: mdl-29323376

ABSTRACT

A multifunctional, wearable sensor based on a reduced oxide graphene (rGO) film onto a porous inverse opal acetylcellulose (IOAC) film has been developed and can perform simultaneous, in situ monitoring of various human motions and ion concentrations in sweat. The rGO film is used as a strain-sensing layer for monitoring human motion via its resistance change, whereas the porous IOAC film is used as a flexible microstructured substrate not only for high sensitive motion sensing, but also for collection and analysis of ion concentrations in sweat by its simple colorimetric changes or reflection-peak shifts. Studies on humans demonstrated that the devices have excellent capability for monitoring various human motions, such as finger bending motion, wrist bending motion, head rotation motion and various small-scale motions of the throat. Simultaneous, in situ analysis of the ion concentration in sweat during these motions shows that the IOAC substrate can detect a wide range of NaCl concentrations in sweat from normal 30 to 680 mM under the conditions of severe dehydration. This investigation provides new horizons toward the design and fabrication of multifunctional, wearable health monitoring devices and the proposed wearable sensor shows promising applications in healthcare and preventive medicine.


Subject(s)
Cellulose , Graphite , Monitoring, Physiologic/instrumentation , Movement , Sweat/chemistry , Wearable Electronic Devices , Humans , Ions/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...