Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 22(10)2017 Oct 24.
Article in English | MEDLINE | ID: mdl-29064450

ABSTRACT

Equol, a metabolite of soybean isoflavone daidzein, has been proven to have various bioactivities related to human health, but little is known on its antifungal activity to plant fungal pathogens. Magnaporthe oryzae is a phytopathogenic fungus that causes rice blast, a devastating disease on rice. Here, we demonstrated that equol influences the development and pathogenicity of M. oryzae. Equol showed a significant inhibition to the mycelial growth, conidial generation and germination, and appressorial formation of M. oryzae. As a result, equol greatly reduced the virulence of M. oryzae on rice and barley leaves. The antifungal activity of equol was also found in several other plant fungal pathogens. These findings expand our knowledge on the bioactivities of equol.


Subject(s)
Equol , Fungicides, Industrial , Magnaporthe/drug effects , Oryza/microbiology , Plant Diseases/prevention & control , Magnaporthe/pathogenicity , Plant Diseases/therapy , Plant Leaves/drug effects , Spores, Fungal/drug effects
2.
Sci Rep ; 6: 36292, 2016 11 08.
Article in English | MEDLINE | ID: mdl-27824105

ABSTRACT

Peroxisomes are required for pathogenicity in many phytopathogenic fungi, but the relationships between fungal pathogenicity and peroxisomal function are not fully understood. Here, we report the identification of a T-DNA insertional mutant C445 of Magnaporthe oryzae, which is defective in pathogenicity. Analysis of the mutation confirmed an insertion into the gene MoPEX1, which encodes a putative homologue to peroxin 1. Targeted gene deletion mutants of MoPEX1 were nonpathogenic and were impaired in vegetative growth, conidiation, and appressorium formation. ΔMopex1 mutants formed abnormal, less pigmented, and nonfunctional appressoria, but they were unable to penetrate plant cuticle. The ΔMopex1 mutants were defective in the utilization of fatty acids (e.g., olive oil and Tween-20). Moreover, deletion of MoPEX1 significantly impaired the mobilization and degradation of lipid droplets during appressorium development. Interestingly, deletion of MoPEX1 blocked the import of peroxisomal matrix proteins. Analysis of an M. oryzae strain expressing GFP-MoPEX1 and RFP-PTS1 fusions revealed that MoPex1 localizes to peroxisomes. Yeast two hybrid experiments showed that MoPex1 physically interacts with MoPex6, a peroxisomal matrix protein important for fungal morphogenesis and pathogenicity. Taken together, we conclude that MoPEX1 plays important roles in peroxisomal function and is required for infection-related morphogenesis and pathogenicity in M. oryzae.


Subject(s)
DNA, Bacterial/genetics , Magnaporthe/pathogenicity , Oryza/microbiology , Peroxins/genetics , Magnaporthe/genetics , Magnaporthe/physiology , Mutagenesis, Insertional , Peroxins/metabolism , Peroxisomes/metabolism , Spores, Fungal/growth & development , Virulence Factors/genetics , Virulence Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...