Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Chem ; 114: 105101, 2021 09.
Article in English | MEDLINE | ID: mdl-34175723

ABSTRACT

Thirty-eight new 3-arylaminoquinoxaline-2-carboxamide derivatives were in silico designed, synthesized and their cytotoxicity against five human cancer cell lines and one normal cells WI-38 were evaluated. Molecular mechanism studies indicated that N-(3-Aminopropyl)-3-(4-chlorophenyl) amino-quinoxaline-2-carboxamide (6be), the compound with the most potent anti-proliferation can inhibit the PI3K-Akt-mTOR pathway via down regulating the levels of PI3K, Akt, p-Akt, p-mTOR and simultaneously inhibit the phosphorylation of Thr308 and Ser473 residues in Akt kinase to servers as a dual inhibitor. Further investigation revealed that 6be activate the P53 signal pathway, modulated the downstream target gene of Akt kinase such p21, p27, Bax and Bcl-2, caused the fluctuation of intracellular ROS, Ca2+ and mitochondrial membrane potential to induce cell cycle arrest and apoptosis in MGC-803 cells. 6be also display moderate anti-tumor activity in vivo while displaying no obvious adverse signs during the drug administration. The results suggest that 3-arylaminoquinoxaline-2-carboxamide derivatives might server as new scaffold for development of PI3K-Akt-mTOR inhibitor.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Quinoxalines/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , Tumor Suppressor Protein p53/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Molecular Structure , Proto-Oncogene Proteins c-akt/metabolism , Quinoxalines/chemical synthesis , Quinoxalines/chemistry , Signal Transduction/drug effects , Structure-Activity Relationship , TOR Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...