Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 225: 112793, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34544019

ABSTRACT

Understanding the effects of chronic exposure to pollutants over generations is of primary importance for the protection of humans and the environment; however, to date, knowledge on the molecular mechanisms underlying multigenerational adverse effects is scarce. We employed a systems biology approach to analyze effects of chronic exposure to gamma radiation at molecular, tissue and individual levels in the nematode Caenorhabditis elegans. Our data show a decrease of 23% in the number of offspring on the first generation F0 and more than 40% in subsequent generations F1, F2 and F3. To unveil the impact on the germline, an in-depth analysis of reproductive processes involved in gametes formation was performed for all four generations. We measured a decrease in the number of mitotic germ cells accompanied by increased cell-cycle arrest in the distal part of the gonad. Further impact on the germline was manifested by decreased sperm quantity and quality. In order to obtain insight in the molecular mechanisms leading to decreased fecundity, gene expression was investigated via whole genome RNA sequencing. The transcriptomic analysis revealed modulation of transcription factors, as well as genes involved in stress response, unfolded protein response, lipid metabolism and reproduction. Furthermore, a drastic increase in the number of differentially expressed genes involved in defense response was measured in the last two generations, suggesting a cumulative stress effect of ionizing radiation exposure. Transcription factor binding site enrichment analysis and the use of transgenic strain identified daf-16/FOXO as a master regulator of genes differentially expressed in response to radiation. The presented data provide new knowledge with respect to the molecular mechanisms involved in reproductive toxic effects and accumulated stress resulting from multigenerational exposure to ionizing radiation.


Subject(s)
Caenorhabditis elegans , Systems Biology , Animals , Caenorhabditis elegans/genetics , Germ Cells , Humans , Radiation, Ionizing , Systems Analysis
2.
Sci Total Environ ; 695: 133835, 2019 Dec 10.
Article in English | MEDLINE | ID: mdl-31425988

ABSTRACT

The current study investigated life stage, tissue and cell dependent sensitivity to ionizing radiation of the nematode Caenorhabditis elegans. Results showed that irradiation of post mitotic L4 stage larvae induced no significant effects with respect to mortality, morbidity or reproduction at either acute dose ≤6 Gy (1500 mGy·h-1) or chronic exposure ≤15 Gy (≤100 mGy·h-1). In contrast, chronic exposure from the embryo to the L4-young adult stage caused a dose and dose-rate dependent reprotoxicity with 43% reduction in total brood size at 6.7 Gy (108 mGy·h-1). Systematic irradiation of the different developmental stages showed that the most sensitive life stage was L1 to young L4. Exposure during these stages was associated with dose-rate dependent genotoxic effects, resulting in a 1.8 to 2 fold increase in germ cell apoptosis in larvae subjected to 40 or 100 mGy·h-1, respectively. This was accompanied by a dose-rate dependent reduction in the number of spermatids, which was positively correlated to the reprotoxic effect (0.99, PCC). RNAseq analysis of nematodes irradiated from L1 to L4 stage revealed a significant enrichment of differentially expressed genes related to both male and hermaphrodite reproductive processes. Gene network analysis revealed effects related to down-regulation of genes required for spindle formation and sperm meiosis/maturation, including smz-1, smz-2 and htas-1. Furthermore, the expression of a subset of 28 set-17 regulated Major Sperm Proteins (MSP) required for spermatid production was correlated (R2 0.80) to the reduction in reproduction and the number of spermatids. Collectively these observations corroborate the impairment of spermatogenesis as the major cause of gamma radiation induced life-stage dependent reprotoxic effect. Furthermore, the progeny of irradiated nematodes showed significant embryonal DNA damage that was associated with persistent effect on somatic growth. Unexpectedly, these nematodes maintained much of their reproductive capacity in spite of the reduced growth.


Subject(s)
Caenorhabditis elegans/physiology , Caenorhabditis elegans/radiation effects , Gamma Rays , Animals , Apoptosis , DNA Damage , Larva , Radiation, Ionizing , Reproduction , Spermatogenesis/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...