Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomater Adv ; 161: 213881, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38749213

ABSTRACT

Nanoparticle's success as drug delivery systems for cancer treatment has been achieved through passive targeting mechanisms. However, tumor heterogeneity and rapid drug clearance limit the treatment efficacy. Improved outcomes and selective drug release can be achieved by grafting ligands at the surface of nanocarriers that bind molecules overexpressed in the tumor microenvironment (TME). In this work, we developed a docetaxel-loaded nanoemulsions (NEs) binding an anti-netrin-1 monoclonal antibody (NP137) to selectively target the netrin-1 protein overexpressed in many different tumors. The goal is to refine a combined approach utilizing NP137 and docetaxel as an improved tumor-targeting chemotherapeutic agent for addressing triple-negative breast cancer (TNBC). Several factors have been considered for the optimization of the active targeted drug delivery system via the click-chemistry conjugation, as the impact of PEGylated surfactant that stabilize the NEs shell on conjugation efficiency, cytocompatibility with EMT6 cell line and colloidal stability over time of NEs. Results showed that a 660 Da PEG chain length contributed to NEs colloidal stability and had no impact on cell viability or on the antibody binding ability for its ligand after surface conjugation. Moreover, docetaxel was encapsulated into the oily core of NEs, with an encapsulation efficiency of 70 %. To validate our treatment strategy in vivo, the 4T1 murine breast cancer model was used. As a result, the comparison of active-targeted and non-targeted NEs revealed that only active-targeted NE could decrease the tumor growth rate.


Subject(s)
Docetaxel , Nanoparticles , Triple Negative Breast Neoplasms , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Animals , Female , Nanoparticles/chemistry , Cell Line, Tumor , Mice , Docetaxel/pharmacology , Docetaxel/therapeutic use , Docetaxel/administration & dosage , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/therapeutic use
2.
Biomacromolecules ; 24(6): 2892-2907, 2023 06 12.
Article in English | MEDLINE | ID: mdl-37228181

ABSTRACT

Oral administration of nanoparticles (NPs) is a promising strategy to overcome solubility and stability issues of many active compounds. However, this route faces major obstacles related to the hostile gastrointestinal (GI) environment, which impairs the efficacy of orally administered nanomedicines. Here, we propose nanocomposites as a promising approach to increase the retention time of NPs in the intestinal tract by using bio- and mucoadhesive matrixes able to protect the cargo until it reaches the targeted area. A microfluidic-based approach has been applied for the production of tailored nanoemulsions (NEs) of about 110 nm, used for the encapsulation of small hydrophobic drugs such as the anti-inflammatory JAK-inhibitor tofacitinib. These NEs proved to be efficiently internalized into a mucus-secreting human intestinal monolayer of Caco-2/HT29-MTX cells and to deliver tofacitinib to subepithelial human THP-1 macrophage-like cells, reducing their inflammatory response. NEs were then successfully encapsulated into alginate hydrogel microbeads of around 300 µm, which were characterized by rheological experiments and dried to create a long-term stable system for pharmaceutical applications. Finally, ex vivo experiments on excised segments of rats' intestine proved the bioadhesive ability of NEs embedded in alginate hydrogels compared to free NEs, showing the advantage that this hybrid system can offer for the treatment of intestinal pathologies.


Subject(s)
Alginates , Nanoparticles , Rats , Humans , Animals , Alginates/chemistry , Caco-2 Cells , Intestines , Anti-Inflammatory Agents , Administration, Oral , Hydrogels , Nanoparticles/chemistry , Drug Delivery Systems
SELECTION OF CITATIONS
SEARCH DETAIL
...