Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Infect Immun ; 91(8): e0006523, 2023 08 16.
Article in English | MEDLINE | ID: mdl-37404162

ABSTRACT

The ubiquitous bacterial pathogen Pseudomonas aeruginosa is responsible for severe infections in patients with burns, cystic fibrosis, and neutropenia. Biofilm formation gives physical refuge and a protected microenvironment for sessile cells, rendering cure by antibiotics a challenge. Bacteriophages have evolved to prey on these biofilms over millions of years, using hydrolases and depolymerases to penetrate biofilms and reach cellular targets. Here, we assessed how a newly discovered KMV-like phage (ΦJB10) interacts with antibiotics to treat P. aeruginosa more effectively in both planktonic and biofilm forms. By testing representatives of four classes of antibiotics (cephalosporins, aminoglycosides, fluoroquinolones, and carbapenems), we demonstrated class-dependent interactions between ΦJB10 and antibiotics in both biofilm clearance and P. aeruginosa killing. Despite identifying antagonism between some antibiotic classes and ΦJB10 at early time points, all classes showed neutral to favorable interactions with the phage at later time points. In one notable example where the antibiotic alone had poor activity against both biofilm and high-density planktonic cells, we found that addition of ΦJB10 demonstrated synergy and resulted in effective treatment of both. Further, ΦJB10 seemed to act as an adjuvant to several antibiotics, reducing the concentration of antibiotics required to ablate the biofilm. This report shows that phages such as ΦJB10 may be valuable additions to the armamentarium against difficult-to-treat biofilm-based infections.


Subject(s)
Bacteriophages , Pseudomonas Infections , Pseudomonas Phages , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Pseudomonas Infections/drug therapy , Cephalosporins , Biofilms , Pseudomonas aeruginosa
2.
mSphere ; 8(4): e0003523, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37387577

ABSTRACT

Marine bacteria face a constant influx of new extracellular DNA (exDNA) due to the massive viral lysis that occurs in the ocean on a daily basis. Generally, biofilms have shown to be induced by self-secreted exDNA. However, the effect of various types of exDNA with varying lengths, self vs non-self, as well as guanine-cytosine content (GC) content on biofilm formation has not been explored, despite being a critical component of the extracellular polymeric substance. To test the effect of such exDNA on biofilms, a marine bioluminescent bacterium (Vibrio hyugaensis) was isolated from the Sippewissett Salt Marsh, USA, and treated with various types of exDNA. We observed rapid pellicle formation with distinct morphologies only in cultures treated with herring sperm gDNA, another Vibrio spp. gDNA, and an oligomer of 61-80% GC content. With pH measurements before and after the treatment, we observed a positive correlation between biofilm formation and the change to a more neutral pH. Our study highlights the importance of studying DNA-biofilm interaction by carefully examining the physical properties of the DNA and by varying its content, length, and source. Our observation may serve as the basis for future studies that seek to interrogate the molecular explanation for the various types of exDNA and their effects on biofilm formation. IMPORTANCE Bacteria mostly exist as biofilm, a protective niche that promotes protection from the environment and nutrient uptake. By forming these structures, bacteria have caused recalcitrant antibiotic-resistant infections, contamination of dairy and seafood, and fouling equipment in the industry. A critical component that makes up the extracellular polymeric substances, the structural component of a biofilm, is the extracellular DNA secreted by the bacteria found in the biofilm. However, previous studies on DNA and biofilm formation have neglected the unique properties of nucleic acid and its high diversity. Our study aims at disentangling these DNA properties by monitoring their effect at inducing biofilm formation. By varying length, self vs non-self, and GC percentage, we used various microscopy techniques to visualize the structural composition of a Vibrio hyugaensis biofilm. We observed DNA-dependent biofilm stimulation in this organism, a novel function of DNA in biofilm biology.


Subject(s)
Extracellular Polymeric Substance Matrix , Vibrio , Male , Humans , Semen , Vibrio/genetics , Biofilms , DNA
3.
mBio ; 12(1)2021 02 09.
Article in English | MEDLINE | ID: mdl-33563833

ABSTRACT

The human gastrointestinal mucosal surface consists of a eukaryotic epithelium, a prokaryotic microbiota, and a carbohydrate-rich interface that separates them. In the gastrointestinal tract, the interaction of bacteriophages (phages) and their prokaryotic hosts influences the health of the mammalian host, especially colonization with invasive pathobionts. Antibiotics may be used, but they also kill protective commensals. Here, we report a novel phage whose lytic cycle is enhanced in intestinal environments. The tail fiber gene, whose protein product binds human heparan sulfated proteoglycans and localizes the phage to the epithelial cell surface, positions it near its bacterial host, a type of locational targeting mechanism. This finding offers the prospect of developing mucosal targeting phage to selectively remove invasive pathobiont species from mucosal surfaces.IMPORTANCE Invasive pathobionts or microbes capable of causing disease can reside deep within the mucosal epithelium of our gastrointestinal tract. Targeted effective antibacterial therapies are needed to combat these disease-causing organisms, many of which may be multidrug resistant. Here, we isolated a lytic bacteriophage (phage) that can localize to the epithelial surface by binding heparan sulfated glycans, positioning it near its host, Escherichia coli This targeted therapy can be used to selectively remove invasive pathobionts from the gastrointestinal tract, preventing the development of disease.


Subject(s)
Bacteriophages/metabolism , Gastric Mucosa/cytology , Gastrointestinal Tract/virology , Heparan Sulfate Proteoglycans/metabolism , Microbial Interactions , Polysaccharides/metabolism , Viral Tail Proteins/metabolism , Animals , Bacteriophages/genetics , Bacteriophages/isolation & purification , Bacteriophages/pathogenicity , Cell Culture Techniques , Escherichia coli/metabolism , Female , Gastric Mucosa/virology , Gastrointestinal Tract/physiology , Humans , Male , Mice, Inbred BALB C , Microbiota , Organoids/cytology , Organoids/virology , Specific Pathogen-Free Organisms , Symbiosis , Viral Tail Proteins/genetics
4.
mBio ; 11(4)2020 08 04.
Article in English | MEDLINE | ID: mdl-32753497

ABSTRACT

The continued rise in antibiotic resistance is precipitating a medical crisis. Bacteriophage (phage) has been hailed as one possible therapeutic option to augment the efficacy of antibiotics. However, only a few studies have addressed the synergistic relationship between phage and antibiotics. Here, we report a comprehensive analysis of phage-antibiotic interaction that evaluates synergism, additivism, and antagonism for all classes of antibiotics across clinically achievable stoichiometries. We combined an optically based real-time microtiter plate readout with a matrix-like heat map of treatment potencies to measure phage and antibiotic synergy (PAS), a process we term synography. Phage-antibiotic synography was performed against a pandemic drug-resistant clonal group of extraintestinal pathogenic Escherichia coli (ExPEC) with antibiotic levels blanketing the MIC across seven orders of viral titers. Our results suggest that, under certain conditions, phages provide an adjuvating effect by lowering the MIC for drug-resistant strains. Furthermore, synergistic and antagonistic interactions are highly dependent on the mechanism of bacterial inhibition by the class of antibiotic paired to the phage, and when synergism is observed, it suppresses the emergence of resistant cells. Host conditions that simulate the infection environment, including serum and urine, suppress PAS in a bacterial growth-dependent manner. Lastly, two different related phages that differed in their burst sizes produced drastically different synograms. Collectively, these data suggest lytic phages can resuscitate an ineffective antibiotic for previously resistant bacteria while also synergizing with antibiotics in a class-dependent manner, processes that may be dampened by lower bacterial growth rates found in host environments.IMPORTANCE Bacteriophage (phage) therapy is a promising approach to combat the rise of multidrug-resistant bacteria. Currently, the preferred clinical modality is to pair phage with an antibiotic, a practice thought to improve efficacy. However, antagonism between phage and antibiotics has been reported, the choice of phage and antibiotic is not often empirically determined, and the effect of the host factors on the effectiveness is unknown. Here, we interrogate phage-antibiotic interactions across antibiotics with different mechanisms of action. Our results suggest that phage can lower the working MIC for bacterial strains already resistant to the antibiotic, is dependent on the antibiotic class and stoichiometry of the pairing, and is dramatically influenced by the host microenvironment.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacteriophages/physiology , Escherichia coli/drug effects , Drug Antagonism , Drug Resistance, Multiple, Bacterial , Drug Synergism , Humans , Microbial Sensitivity Tests , Phage Therapy
5.
Phage (New Rochelle) ; 1(2): 66-74, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32626851

ABSTRACT

Mutation is the most powerful driver of change for life on Earth. Pathogenic bacteria utilize mutation as a means to survive strong live-die selective pressures generated by chemical antibiotics. As such, the traditional drug-making pipeline, characterized by significant financial and time investment, is insufficient to keep pace with the rapid evolution of bacterial resistance to structurally fixed and chemically unmalleable antibacterial compounds. In contrast, the genetic diversity and adaptive mutability of the bacteriophage can be leveraged to not only overcome resistance but also used for the development of enhanced traits that increase lytic potential and therapeutic efficacy in relevant host microenvironments. This is the fundamental premise behind Baylor College of Medicine's Tailored Antibacterials and Innovative Laboratories for Phage (Φ) Research (TAILΦR) initiative. In this perspective, we outline the concept, structure, and process behind TAILΦR's attempt to generate a personalized therapeutic phage that addresses the most clinically challenging of bacterial infections.

SELECTION OF CITATIONS
SEARCH DETAIL
...