Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.362
Filter
1.
Nat Commun ; 15(1): 5624, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965231

ABSTRACT

Graphene has been extensively utilized as an electrode material for nonaqueous electrochemical capacitors. However, a comprehensive understanding of the charging mechanism and ion arrangement at the graphene/electrolyte interface remain elusive. Herein, a gap-enhanced Raman spectroscopic strategy is designed to characterize the dynamic interfacial process of graphene with an adjustable number of layers, which is based on synergistic enhancement of localized surface plasmons from shell-isolated nanoparticles and a metal substrate. By employing such a strategy combined with complementary characterization techniques, we study the potential-dependent configuration of adsorbed ions and capacitance curves for graphene based on the number of layers. As the number of layers increases, the properties of graphene transform from a metalloid nature to graphite-like behavior. The charging mechanism shifts from co-ion desorption in single-layer graphene to ion exchange domination in few-layer graphene. The increase in area specific capacitance from 64 to 145 µF cm-2 is attributed to the influence on ion packing, thereby impacting the electrochemical performance. Furthermore, the potential-dependent coordination structure of lithium bis(fluorosulfonyl) imide in tetraglyme ([Li(G4)][FSI]) at graphene/electrolyte interface is revealed. This work adds to the understanding of graphene interfaces with distinct properties, offering insights for optimization of electrochemical capacitors.

2.
J Neuroimmunol ; 393: 578401, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38996718

ABSTRACT

BACKGROUND: We previously reported that the HMGB1/TLR4 axis promoted inflammation during the acute phase of intracerebral hemorrhage. Given that this phase is known to involve neuronal pyroptosis and neuroinflammation, here we explore whether HMGB1/TLR signaling activate inflammasome and pyroptosis after intracerebral hemorrhage. METHODS: Autologous blood was injected into Sprague-Dawley rats to induce intracerebral hemorrhage. Neurological deficits were assessed using a modified neurological severity score. These expression and localization of NLRP1 and NLRP3 inflammasomes, as well as the levels of pyroptosis and pyroptosis-associated proteins were assessed using Western blot or immunocytochemistry. These experiments were repeated in animals that received treatment with short interfering RNAs against NLRP1 or NLRP3, with HMGB1 inhibitor ethyl pyruvate or TLR4 inhibitor TAK-242. RESULTS: Intracerebral hemorrhage upregulated NLRP1 and NLRP3 in the ipsilateral striatum and increased the proportions of these cells that were pyroptosis-positive. Additionally, the levels of caspase protein family (e.g., pro-caspase-1 and caspase-1), apoptosis-associated speck-like protein (ASC), pro-interleukin-1ß (IL-1ß), and IL-1ß were also elevated. These effects on pyroptosis and associated neurological deficit, were partially reversed by knockdown of NLRP1 or NLRP3, or by inhibition of HMGB1 or TLR4. Inhibition of HMGB1 or TLR4 resulted in the downregulation NLRP3 but not NLRP1. CONCLUSIONS: The HMGB1/TLR4 signaling may activate the NLRP3 inflammasome during the acute phase of intracerebral hemorrhage, resulting in the inflammatory process known as pyroptosis. These insights suggest potential therapeutic targets for the mitigation tissue injury and associated neurological deficits following hemorrhagic stroke.

3.
Clin Neurol Neurosurg ; 244: 108440, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38996800

ABSTRACT

BACKGROUND AND PURPOSE: Toll-like receptors (TLRs) are involved in innate immunity and inflammatory responses in various diseases. Our study aimed to investigate the association between the levels of soluble TLR4 (sTLR4) and soluble TLR2 (sTLR2) and clinical outcomes following intracerebral hemorrhage (ICH). METHODS: Patients admitted to department of Neurology with acute ICH were included. Plasma levels of sTLR4 and sTLR2 after ICH were measured by enzyme-linked immunosorbent assay. Poor clinical outcome was defined as a modified Rankin score (mRS) of 3-6 at 3-month and 12-month after onset. RESULTS: All 207 patients with ICH and 100 non-stroke controls were included in our analysis. The mean sTLR4 level was 4.53±1.51 ng/ml and mean sTLR2 level was 3.65±0.72 ng/ml. There was significant trend towards worse clinical outcomes with increasing sTLR4 and sTLR2 terciles at 3 and 12 months. According to receiver operating curve (ROC), the sTLR4 was reliable predictor for poor clinical outcome at 3 months (ROC=0.75) and 12 months (ROC=0.74). The sTLR2 was less reliable predictor for poor clinical outcome at 3 months (ROC=0.64) and 12 months (ROC=0.65). The level of sTLR4 was an independent predictor of poor clinical outcome at 12-month (OR 1.24, 95 % CI 1.16-1.80; P=0.019). CONCLUSIONS: The sTLR4 quantification may provide accurate prognostic information after ICH.

4.
Nanoscale ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979693

ABSTRACT

Atomically ordered intermetallic compounds (IMCs) have been extensively studied for exploring catalysts with high activity, selectivity, and longevity. Compared to random alloys, IMCs present a more pronounced geometric and electronic effect with desirable catalytic performance. Their well-defined structure makes IMCs ideal model catalysts for studying the catalytic mechanism. This review focuses especially on elemental composition, electron transfer, and structure/phase evolution under high temperature treatment conditions, providing direct evidence for the migration and rearrangement of metal atoms through electron microscopy. We then present the outstanding applications of IMCs in growing single-walled nanotubes, hydrogenation/dehydrogenation reactions, and electrocatalysis from the perspective of electronic, geometric, strain, and bifunctional effects of ordered IMCs. Finally, the current obstacles associated with the use of in situ techniques are proposed, as well as future research possibilities.

5.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(7): 790-796, 2024 Jul 10.
Article in Chinese | MEDLINE | ID: mdl-38946359

ABSTRACT

OBJECTIVE: To explore the clinical characteristics and genetic variants in three children with late-onset Multiple acyl-Coenzyme A dehydrogenase deficiency (MADD type Ⅲ). METHODS: Clinical data of three children diagnosed with late-onset MADD at the Children's Hospital Affiliated to Zhengzhou University between March 2020 and March 2022 were retrospectively analyzed. All children were subjected to whole exome sequencing (WES), and candidate variants were verified by Sanger sequencing. All children had received improved metabolic therapy and followed up for 1 ~ 3 years. RESULTS: The children had included 2 males and 1 female, and aged from 2 months to 11 years and 7 months. Child 1 had intermittent vomiting, child 2 had weakness in lower limbs, while child 3 had no symptom except abnormal neonatal screening. Tandem mass spectrometry of the three children showed elevation of multiple acylcarnitines with short, medium and long chains. Children 1 and 2 showed increased glutaric acid and multiple dicarboxylic acids by urine Gas chromatography-mass spectrometry (GC-MS) analysis. All children were found to harbor compound heterozygous variants of the ETFDH gene, including a paternal c.1211T>C (p.M404T) and a maternal c.488-22T>G variant in child 1, a paternal c.1717C>T (p.Q573X) and a maternal c.250G>A (p.A84T) variant in child 2, and a paternal c.1285+1G>A and maternal c.629A>G (p.S210N) variant in child 3. As for the treatment, high-dose vitamin B2, levocarnitine and coenzyme Q10 were given to improve the metabolism, in addition with a low fat, hypoproteinic and high carbohydrate diet. All children showed a stable condition with normal growth and development during the follow-up. CONCLUSION: The compound heterozygous variants of the ETFDH gene probably underlay the muscle weakness, remittent vomiting, elevated short, medium, and long chain acylcarnitine, as well as elevated glutaric acid and various dicarboxylic acids in the three children with type Ⅲ MADD.


Subject(s)
Electron-Transferring Flavoproteins , Multiple Acyl Coenzyme A Dehydrogenase Deficiency , Humans , Male , Female , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/genetics , Infant , Child , Child, Preschool , Electron-Transferring Flavoproteins/genetics , Mutation , Retrospective Studies , Carnitine/analogs & derivatives , Carnitine/blood , Iron-Sulfur Proteins/genetics , Exome Sequencing , Oxidoreductases Acting on CH-NH Group Donors/genetics , Genetic Variation
6.
Anal Chem ; 96(28): 11448-11454, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38960938

ABSTRACT

Within pharmaceutical research, ensuring the enantiomeric purity of chiral compounds is critical. Specifically, chiral amines are a crucial category of compounds, due to their extensive therapeutic uses. However, the enantiomeric analysis of these compounds, particularly those with significant steric hindrance, remains a challenge. To address this issue, our research introduces a novel chiral 19F-tagged NNO palladium pincer probe, strategically engineered with an open binding site to accommodate bulky amines. This probe facilitates the enantiodifferentiation of such amines, as evidenced by the distinct 19F NMR signals generated by the enantiomers. Moreover, our findings highlight the probe's applicability in the chiral discrimination of various psychoactive substances, underscoring its potential for the identification of illegal stimulant use and contributing to forensic investigations.

7.
Front Endocrinol (Lausanne) ; 15: 1325320, 2024.
Article in English | MEDLINE | ID: mdl-38836225

ABSTRACT

Background: Creatinine-cystatin C ratio (CCR) has been demonstrated as an objective marker of sarcopenia in clinical conditions but has not been evaluated as an osteoporosis marker in individuals with normal renal function. Methods: We selected 271,831 participants with normal renal function from UK Biobank cohort. Multivariable linear/logistic regression and Cox proportional hazards model were used to investigate the phenotypic relationship between CCR and osteoporosis in total subjects and gender-stratified subjects. Based on the genome-wide association study (GWAS) data, linkage disequilibrium regression (LDSC) and Mendelian randomization (MR) analysis were performed to reveal the shared genetic correlations and infer the causal effects, respectively. Results: Amongst total subjects and gender-stratified subjects, serum CCR was positively associated with eBMD after adjusting for potential risk factors (all P<0.05). The multivariable logistic regression model showed that the decrease in CCR was associated with a higher risk of osteoporosis/fracture in all models (all P<0.05). In the multivariable Cox regression analysis with adjustment for potential confounders, reduced CCR is associated with the incidence of osteoporosis and fracture in both total subjects and gender-stratified subjects (all P<0.05). A significant non-linear dose-response was observed between CCR and osteoporosis/fracture risk (P non-linearity < 0.05). LDSC found no significant shared genetic effects by them, but PLACO identified 42 pleiotropic SNPs shared by CCR and fracture (P<5×10-8). MR analyses indicated the causal effect from CCR to osteoporosis/fracture. Conclusions: Reduced CCR predicted increased risks of osteoporosis/fracture, and significant causal effects support their associations. These findings indicated that the muscle-origin serum CCR was a potential biomarker to assess the risks of osteoporosis and fracture.


Subject(s)
Biomarkers , Creatinine , Cystatin C , Mendelian Randomization Analysis , Osteoporosis , Humans , Female , Male , Osteoporosis/genetics , Osteoporosis/blood , Osteoporosis/epidemiology , Middle Aged , Biomarkers/blood , Creatinine/blood , Cystatin C/blood , Cystatin C/genetics , Aged , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Adult , Bone Density/genetics , Risk Factors
8.
J Pharmacol Exp Ther ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844363

ABSTRACT

The consumption of D9-tetrahydrocannabinol (THC)- or cannabis-containing edibles has increased in recent years; however, the behavioral and neural circuit effects of such consumption remain unknown, especially in the context of ingestion of higher doses resulting in cannabis intoxication. We examined the neural and behavioral effects of acute high-dose edible cannabis consumption (AHDECC). Sprague-Dawley rats (6 males, 7 females) were implanted with electrodes in the prefrontal cortex (PFC), dorsal hippocampus (dHipp), cingulate cortex (Cg), and nucleus accumbens (NAc). Rats were provided access to a mixture of Nutella (6 g/kg) and THC-containing cannabis oil (20 mg/kg) for 10 minutes, during which they voluntarily consumed all of the provided Nutella and THC mixture. Cannabis tetrad and neural oscillations were examined 2, 4, 8, and 24-h after exposure. In another cohort (16 males, 15 females), we examined the effects of AHDECC on learning and prepulse inhibition, and serum and brain THC and 11-hydroxy-THC concentrations. AHDECC resulted in higher brain and serum THC and 11-hydroxy-THC levels in female rats over 24 h. AHDECC also produced: 1) Cg, dHipp, and NAc gamma power suppression, with the suppression being greater in female rats, in a time-dependent manner; 2) hypolocomotion, hypothermia, and anti-nociception in a time-dependent manner; and 3) learning and prepulse inhibition impairments. Additionally, most neural activity and behavior changes appear 2 h post-ingestion, suggesting that interventions around this time might be effective in reversing/reducing the effects of AHDECC. Significance Statement The effects of high-dose edible cannabis on behaviour and neural circuitry are poorly understood. We found that the effects of acute high-dose edible cannabis consumption, which include decreased gamma power, hypothermia, hypolocomotion, analgesia, and learning and information processing impairments, are time- and sex-dependent. Moreover, these effects begin 2 h after AHDECC and last for at least 24 h, suggesting that treatments should target this time window in order to be effective.

9.
Nat Prod Res ; : 1-7, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38832674

ABSTRACT

Five new sesquiterpenoids, (4S, 5S, 6S, 7S, 8 R)-5,6-dihydroxy-1-acetoxy-10(14)-en-britannilactone (1), (4S, 5 R, 6S, 7S, 8 R)-5,6-dihydroxy-1-acetoxy-10(14)-en-britannilactone (2), 6-O-propionyl-britannilactone (3), 1ß-hydroxy-3α-acetoxyeudesma-11(13)-en-12,8ß-olide (4) and 1ß,5ß-dihydroxyeudesma-11(13)-en-12,8ß-olide (5), along with twelve known ones were isolated from the flowers of Pentanema britannicum (L.) D.Gut.Larr. Among them, compounds 1 and 2 were stereoisomers which belong to 1,10-seco-eudesmane sesquiterpenoid with rare double bond between C-10 and C-14. The structures of the isolated compounds were elucidated by various spectroscopic methods, including 1D and 2D NMR experiments.

10.
Neurosci Bull ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833201

ABSTRACT

Abnormal visual experience during the critical period can cause deficits in visual function, such as amblyopia. High magnesium (Mg2+) supplementary can restore ocular dominance (OD) plasticity, which promotes the recovery of amblyopic eye acuity in adults. However, it remains unsolved whether Mg2+ could recover binocular vision in amblyopic adults and what the molecular mechanism is for the recovery. We found that in addition to the recovery of OD plasticity, binocular integration can be restored under the treatment of high Mg2+ in amblyopic mice. Behaviorally, Mg2+-treated amblyopic mice showed better depth perception. Moreover, the effect of high Mg2+ can be suppressed with transient receptor potential melastatin-like 7 (TRPM7) knockdown. Collectively, our results demonstrate that high Mg2+ could restore binocular visual functions from amblyopia. TRPM7 is required for the restoration of plasticity in the visual cortex after high Mg2+ treatment, which can provide possible clinical applications for future research and treatment of amblyopia.

11.
Chem Biodivers ; : e202401093, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867371

ABSTRACT

Two previously undescribed coumarins (1-2) were isolated from the root of Notopterygium incisum. The structures of new findings were elucidated by analyses of spectral evidences in HRESIMS, NMR, as well as ICD. The absolute configurations were further confirmed by chemical calculations. 1-2 exhibits obviously anti-inflammatory activity by inhibiting the expression of inflammatory mediators (COX-2, iNOS), as well as reducing the release of NO and the accumulation of ROS in cells. Western blotting analysis revealed that 2 could inhibit the PI3K/AKT pathway by reducing the expression of p-PI3K and p-AKT.

12.
Phys Rev Lett ; 132(21): 216901, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38856240

ABSTRACT

We report an efficient temperature modulation of thermal emissivity near room temperature using quantum dots. The quantum confinement effects result in a unique feature that resembles a quasi-two-level electronic system (QTLES). The QTLES's dielectric function ϵ(ω) is shown to be dependent on the electron population difference δρ(T), which exhibits strong temperature dependence and can be tuned by adjusting the Fermi-level of the solid. Experiments with the Ag_{2}Se quantum dots confirm the theory and showcase a modulate rate dε/dT≈1.5×10^{-3} K^{-1} that meets the requirements for engineering applications. This study demonstrates an exciting new avenue for temperature modulation of thermal emission and may open up new possibilities for applications like energy harvesting, thermal camouflage, thermal rectifications, and many others.

13.
J Colloid Interface Sci ; 672: 279-286, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38843680

ABSTRACT

The rational construction of highly active and robust non-precious metal oxygen reduction electrocatalysts is a vital factor to facilitate commercial applications of Zn-air batteries. In this study, a precise and stable heterostructure, comprised of a coupling of Co3Fe7 and Fe3C, was constructed through an interface engineering-induced strategy. The coordination polymerization of the resin with the bimetallic components was meticulously regulated to control the interfacial characteristics of the heterostructure. The synergistic interfacial effects of the heterostructure successfully facilitated electron coupling and rapid charge transfer. Consequently, the optimized CST-FeCo displayed superb oxygen reduction catalytic activity with a positive half-wave potential of 0.855 V vs. RHE. Furthermore, the CST-FeCo air electrode of the liquid zinc-air battery revealed a large specific capacity of 805.6 mAh gZn-1, corresponding to a remarkable peak power density of 162.7 mW cm-2, and a long charge/discharge cycle stability of 220 h, surpassing that of the commercial Pt/C catalyst.

14.
Int J Biol Macromol ; 274(Pt 2): 133304, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925189

ABSTRACT

Epithelial barrier impairment of intestinal inflammation leads to the leakage of bacteria, antigens and consequent persistent immune imbalance. Restoring the barrier function holds promise for management of intestinal inflammation, while the theragnostic strategies are limited. In this study, we developed a novel coating by catalase (CAT)-catalyzed polymerization of tannic acid (TA) and combined chelation network with Fe3+. TA-Fe3+ coating was self-polymerized in situ along the small intestinal mucosa, demonstrating persistent adhesion properties and protective function. In enteritis models, sequential administration of TA-Fe3+ complex solution effectively restored the barrier function and alleviated the intestinal inflammation. Overexpressed CAT in inflammatory lesion is more favorable for the in situ targeting growth of TA-Fe3+ coating onto the defective barrier. Based on the high longitudinal relaxivity of Fe3+, the pathologically catalyzed coating facilitated the visualization of intestinal barrier impairment through MRI. In conclusion, the novel TA-Fe3+ delivery coating proposed an alternative approach to promote theranostic intervention for intestinal diseases.

15.
Nat Commun ; 15(1): 5170, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886341

ABSTRACT

The spatiotemporal regulation of inflammasome activation remains unclear. To examine the mechanism underlying the assembly and regulation of the inflammasome response, here we perform an immunoprecipitation-mass spectrometry analysis of apoptosis-associated speck-like protein containing a CARD (ASC) and identify NCF4/1/2 as ASC-binding proteins. Reduced NCF4 expression is associated with colorectal cancer development and decreased five-year survival rate in patients with colorectal cancer. NCF4 cooperates with NCF1 and NCF2 to promote NLRP3 and AIM2 inflammasome activation. Mechanistically, NCF4 phosphorylation and puncta distribution switches from the NADPH complex to the perinuclear region, mediating ASC oligomerization, speck formation and inflammasome activation. NCF4 functions as a sensor of ROS levels, to establish a balance between ROS production and inflammasome activation. NCF4 deficiency causes severe colorectal cancer in mice, increases transit-amplifying and precancerous cells, reduces the frequency and activation of CD8+ T and NK cells, and impairs the inflammasome-IL-18-IFN-γ axis during the early phase of colorectal tumorigenesis. Our study implicates NCF4 in determining the spatial positioning of inflammasome assembly and contributing to inflammasome-mediated anti-tumor responses.


Subject(s)
CARD Signaling Adaptor Proteins , Colorectal Neoplasms , Immunologic Surveillance , Inflammasomes , Reactive Oxygen Species , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Inflammasomes/metabolism , Animals , Humans , Mice , CARD Signaling Adaptor Proteins/metabolism , CARD Signaling Adaptor Proteins/genetics , Reactive Oxygen Species/metabolism , Disease Progression , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NADPH Oxidases/metabolism , NADPH Oxidases/genetics , Mice, Knockout , Interleukin-18/metabolism , Mice, Inbred C57BL , Male , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Female , Phosphorylation , Cell Line, Tumor
16.
Front Immunol ; 15: 1404108, 2024.
Article in English | MEDLINE | ID: mdl-38873601

ABSTRACT

Background: Forest musk deer (FMD, Moschus Berezovskii) is a critically endangered species world-widely, the death of which can be caused by pulmonary disease in the farm. Pulmonary fibrosis (PF) was a huge threat to the health and survival of captive FMD. MicroRNAs (miRNAs) and messenger RNAs (mRNAs) have been involved in the regulation of immune genes and disease development. However, the regulatory profiles of mRNAs and miRNAs involved in immune regulation of FMD are unclear. Methods: In this study, mRNA-seq and miRNA-seq in blood were performed to constructed coexpression regulatory networks between PF and healthy groups of FMD. The hub immune- and apoptosis-related genes in the PF blood of FMD were explored through Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Further, protein-protein interaction (PPI) network of immune-associated and apoptosis-associated key signaling pathways were constructed based on mRNA-miRNA in the PF blood of the FMD. Immune hub DEGs and immune hub DEmiRNAs were selected for experimental verification using RT-qPCR. Results: A total of 2744 differentially expressed genes (DEGs) and 356 differentially expressed miRNAs (DEmiRNAs) were identified in the PF blood group compared to the healthy blood group. Among them, 42 DEmiRNAs were negatively correlated with 20 immune DEGs from a total of 57 correlations. The DEGs were significantly associated with pathways related to CD molecules, immune disease, immune system, cytokine receptors, T cell receptor signaling pathway, Th1 and Th2 cell differentiation, cytokine-cytokine receptor interaction, intestinal immune network for IgA production, and NOD-like receptor signaling pathway. There were 240 immune-related DEGs, in which 186 immune-related DEGs were up-regulated and 54 immune-related DEGs were down-regulated. In the protein-protein interaction (PPI) analysis of immune-related signaling pathway, TYK2, TLR2, TLR4, IL18, CSF1, CXCL13, LCK, ITGB2, PIK3CB, HCK, CD40, CD86, CCL3, CCR7, IL2RA, TLR3, and IL4R were identified as the hub immune genes. The mRNA-miRNA coregulation analysis showed that let-7d, miR-324-3p, miR-760, miR-185, miR-149, miR-149-5p, and miR-1842-5p are key miRNAs that target DEGs involved in immune disease, immune system and immunoregulation. Conclusion: The development and occurrence of PF were significantly influenced by the immune-related and apoptosis-related genes present in PF blood. mRNAs and miRNAs associated with the development and occurrence of PF in the FMD.


Subject(s)
Deer , Gene Expression Profiling , Gene Regulatory Networks , MicroRNAs , Pulmonary Fibrosis , RNA, Messenger , Transcriptome , Animals , MicroRNAs/genetics , Deer/genetics , Deer/immunology , RNA, Messenger/genetics , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/immunology , Protein Interaction Maps , Gene Expression Regulation , Computational Biology/methods
17.
Front Microbiol ; 15: 1364486, 2024.
Article in English | MEDLINE | ID: mdl-38699479

ABSTRACT

Introduction: The composition of the intestinal microbiome correlates significantly with an animal's health status. Hence, this indicator is highly important and sensitive for protecting endangered animals. However, data regarding the fungal diversity of the wild Budorcas taxicolor (takin) gut remain scarce. Therefore, this study analyzes the fungal diversity, community structure, and pathogen composition in the feces of wild B. taxicolor. Methods: To ensure comprehensive data analyses, we collected 82 fecal samples from five geographical sites. Amplicon sequencing of the internal transcribed spacer (ITS) rRNA was used to assess fecal core microbiota and potential pathogens to determine whether the microflora composition is related to geographical location or diet. We further validated the ITS rRNA sequencing results via amplicon metagenomic sequencing and culturing of fecal fungi. Results and discussion: The fungal diversity in the feces of wild Budorcas taxicolor primarily comprised three phyla (99.69%): Ascomycota (82.19%), Fungi_unclassified (10.37%), and Basidiomycota (7.13%). At the genus level, the predominant fungi included Thelebolus (30.93%), Functional_unclassified (15.35%), and Ascomycota_unclassified (10.37%). Within these genera, certain strains exhibit pathogenic properties, such as Thelebolus, Cryptococcus, Trichosporon, Candida, Zopfiella, and Podospora. Collectively, this study offers valuable information for evaluating the health status of B. taxicolor and formulating protective strategies.

18.
Curr Res Food Sci ; 8: 100732, 2024.
Article in English | MEDLINE | ID: mdl-38699681

ABSTRACT

Camellia oil, recognized as a high-quality edible oil endorsed by the Food and Agriculture Organization, is confronted with authenticity issues arising from fraudulent adulteration practices. These practices not only pose health risks but also lead to economic losses. This study proposes a novel machine learning framework, referred to as a transformer encoder backbone with a support vector machine regressor (TES), coupled with an electronic nose (E-nose), for detecting varying adulteration levels in camellia oil. Experimental results indicate that the proposed TES model exhibits the best performance in identifying the adulterated concentration of camellia oi, compared with five other machine learning models (the support vector machine, random forest, XGBoost, K-nearest neighbors, and backpropagation neural network). The results obtained by E-nose detection are verified by complementary Fourier transform infrared (FTIR) spectroscopy analysis for identifying functional groups, ensuring accuracy and providing a comprehensive assessment of the types of adulterants. The proposed TES model combined with E-nose offers a rapid, effective, and practical tool for detecting camellia oil adulteration. This technique not only safeguards consumer health and economic interests but also promotes the application of E-nose in market supervision.

19.
Article in English | MEDLINE | ID: mdl-38717675

ABSTRACT

INTRODUCTION: Parkinson disease (PD) is the second most common neurodegenerative disease. Members of the Black Diaspora (MBD) and Hispanic/Latinx people are less likely to receive a timely diagnosis following the onset of symptoms and more likely to experience greater disease severity due to late diagnosis. Historically marginalized populations (i.e., MBD, Hispanic, and Latinx communities) are not accurately represented in research; this, along with many other barriers, compounds underreporting and lack of recognition of PD. It is important to understand barriers to early diagnosis and healthcare access for these historically marginalized populations from the community's perspective. METHODS: Our team conducted two focus groups to identify barriers and facilitators to PD healthcare-seeking behavior. We sought to identify which barriers are modifiable to ultimately improve engagement in neurological care for MBD and Hispanic individuals affected by PD. RESULTS: We enrolled 15 participants (13 female; African/African American/Black n = 10, Hispanic/Puerto Rican n = 3, other n = 2) for two focus groups. Discussions revealed sources of barriers to healthcare-seeking behavior in three main domains: legacy of racism in the United States, ancestral cultural environment, and healthcare system access. These sources influenced individuals' PD knowledge and familiarity. Additionally, participants expressed a desire to know more about PD and called for increased community-based programming for education and awareness. DISCUSSION: This paper uses a community-based participatory research approach to describe the experiences of MBD, Hispanic, and Latinx people in Manhattan and the surrounding areas in relation to possible sources of healthcare disparities and delayed PD diagnosis. These sources have broad implications and should be addressed through collaborative community programming.

20.
Inflammation ; 2024 May 26.
Article in English | MEDLINE | ID: mdl-38796804

ABSTRACT

Ultraviolet (UV) irradiation significantly contributes to photoaging. Ferroptosis, an iron-dependent cell death mode recently identified, plays a key role in UVB-induced skin photoaging. This study examines the functions and regulatory mechanisms of ferroptosis in this regard. Characterized by increased intracellular iron and reactive oxygen species (ROS), ferroptosis is associated with mitochondrial function and structure. Through RNA sequencing, we identified NADH: ubiquinone oxidoreductase subunit S4 (NDUFS4), a gene implicated in UVB-mediated photoaging, and explored its role in ferroptosis by NDUFS4 knockdown. In vitro, inhibiting NDUFS4 reduced ferroptosis, decreased ROS and matrix metallopeptidase 1 levels, and increased collagen type I alpha 1 chain, glutathione peroxidase 4 (GPX4), ferritin heavy chain 1, and solute carrier family 7 member 11 levels, suggesting a reinforced ferroptosis protective mechanism. Additionally, NDUFS4 regulates ferroptosis via the mitogen-activated protein kinase (MAPK) pathway, with its knockdown reducing p38 and ERK phosphorylation and elevating GPX4 levels, enhancing ferroptosis resistance. Animal experiments supported these findings, demonstrating that Ferrostatin-1, a ferroptosis inhibitor, significantly mitigated UVB-induced skin photoaging and related protein expression. This study uncovers NDUFS4's novel role in regulating ferroptosis and provides new insights into ferroptosis-mediated UVB-induced skin photoaging.

SELECTION OF CITATIONS
SEARCH DETAIL
...